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ABSTRACT. Mosquito surveillance and pesticide treatment data can be combined in statistical models to
provide insight into drivers of mosquito population dynamics. In cooperation with the county-based public health
authority, multiple municipalities in Tarrant County, Texas, supplied surveillance and pesticide treatment data
available from the 2014 mosquito season for analysis. With these data, general linear mixed modeling was used to
model population dynamics of Culex quinquefasciatus, the primary vector for West Nile virus. Temporally lagged
pesticide treatment information, weather data, and habitat variables were used as predictors of logþ1 transformed
mosquito count data, and Akaike information criteria corrected for small sample sizes (AICc)-based model
selection and multimodel averaging was used to produce a final model of mosquito abundance. The model
revealed that mosquito counts were driven mainly by seasonally fluctuating temperature, precipitation, human
population density, and treatment. In particular, interactions between temperature and treatment, and precipitation
and human population density significantly contributed to the interpretation of the effects of the nonweather
variables.
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INTRODUCTION

In the United States, considerable effort is
expended to control mosquito populations and their
associated disease risk, mostly by an array of
publicly funded mosquito control organizations
(e.g., county and city health departments, mosquito
abatement districts, and vector control divisions).
These operations vary greatly, both regionally and
operationally, but there are a few commonalities.
First, the reduction of mosquito populations is
implemented by targeting eggs, larvae, pupae, and
adults through water management and pesticide
applications (Connelly and Carlson 2009). Second,
mosquito control programs survey mosquito popu-
lations using adult traps and larval sampling in
order to decide where and when to apply mosquito
control treatments (Connelly and Carlson 2009).
These 2 aspects are important because they
ultimately generate data that inform management
decisions. However, these data also provide oppor-
tunities to more explicitly account for factors
driving mosquito population dynamics via the use
of quantitative modeling techniques and serve as
the basis for the development of model-based
management tools.

Statistical modeling techniques are particularly
well suited to rapidly use information generated
from mosquito control programs, since mosquito
counts collected at traps can be modeled against

associated factors such as weather and habitat
information that is increasingly publicly available.
Indeed, efforts in this regard have included land-
scape cover-based models (Diuk-Wasser et al. 2006,
Schurich et al. 2014), temporally autoregressive
models (Brown et al. 2011), and complex general-
ized linear models that account for temporal and
spatial correlation using Bayesian estimation meth-
ods (Yoo 2014). Interestingly, few such models
have used treatment as a prediction variable (for an
exception, see Pawelek et al. 2014), despite the
central role that treatment plays in mosquito control
programs. This may be due to several reasons,
including inconsistent or lacking curation of suit-
ably detailed spatiotemporal information. However,
the inclusion of treatment data to construct or
validate quantitative models can provide valuable
insight into the influence of vector control manage-
ment on vector populations at landscape scales
(Pawelek et al. 2014).

Tarrant County is in north-central Texas, USA,
with its county seat located at Fort Worth. It is an
urban county of 1.8 million people (Tarrant County,
2016). Within the county there are several species
of mosquito that belong to the genus Culex that may
be vectors of West Nile virus (WNV). These
include Culex quinquefasciatus Say, Cx. tarsalis
Coquillett, Cx. restuans Theobald, and Cx. nigro-
palpus Theobald. Culex quinquefasciatus are of
particular concern since they are urban mosquitoes,
breeding in small quantities of stagnant water, as
well as water sources like wastewater lagoons
(Zequi et al. 2014) and are known to be the primary
vectors of WNV. Several municipalities operate
independent mosquito control programs in the
county (including the city of Fort Worth), while
the Environmental Health Division of Tarrant
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County Public Health (TCPH) administers a
mosquito control program that covers unincorpo-
rated Tarrant County. These entities maintain
networks of adult mosquito surveillance traps and
coordinate with the TCPH to manage vector-borne
disease risks. Importantly, these entities also
maintain spatially explicit treatment records, in-
cluding both larvicide and adulticide applications.
Thus, this dataset provided a rare opportunity to
incorporate treatment information collected across
organizations into a landscape-level statistical
model of mosquito abundance.

MATERIALS AND METHODS

Data acquisition and processing

Mosquito surveillance and treatment data were
obtained from TCPH following the 2014 mosquito
season (April–October). The study area included a
subset of participating municipalities within the

county that administers mosquito control programs
and unincorporated Tarrant County, in which the
mosquito control program is operated by TCPH (Fig.
1). Collaborating municipalities included Arlington,
Burleson, Colleyville, North Richland Hills, South-
lake, and Haltom City.

The response variable of interest in this study was
counts of female Cx. quinquefasciatus collected in
Centers for Disease Control and Prevention (CDC)
gravid traps (Reiter 1983) by both individual
municipalities and TCPH, with data compiled by
TCPH. Gravid traps are designed to attract gravid
female Culex mosquitoes using water infused with
organic materials. In the case of TCPH, that infusion
is made from grass clippings fermented in water for
2 wk. In addition to being useful for surveilling viral
infection rates in blood-fed females in general,
gravid traps are known to be highly effective at
attracting Cx. quinquefasciatus (DiMenna et al.
2006, White et al. 2009). Traps in the study area

Fig. 1. Collaborating municipalities and traps in unincorporated Tarrant County, TX, operated by Tarrant County
Public Health (TCPH). Some municipalities, including Burleson and Arlington overlap into adjacent counties.
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were operated on a weekly basis throughout the
mosquito season, with some on a permanent basis,
and some on a temporary basis. For the purposes of
comparability, only data from permanent traps were
used in this analysis.

Based on mosquito biology and previous efforts
to model mosquito surveillance data (Schurich et al.
2014, Yoo 2014), it was hypothesized that mosquito
abundance, as indicated by counts, could be
modeled as a factor of 3 exogenous variable types
(or a subset of them), including weather, mosquito
control treatments, and habitat quality. Owing to
their poikilothermic (i.e., cold-blooded) physiology
and the necessity for standing water in which to
breed, temperature and precipitation are known
drivers of mosquito populations. Weather data,
including precipitation and temperature records,
were downloaded from the National Climatic Data
Center website (NCEI 2015). These data were
collected from 8 weather stations distributed around
Tarrant County. Surveillance records were associ-
ated with weather data from the nearest weather
station. A preliminary investigation using tempera-
ture data loggers at 20 trap locations around the
county demonstrated that temperature data collected
at weather stations closely aligned with tempera-
tures at traps (data not shown).

Habitat variability was accounted for using the
normalized difference vegetation index (NDVI) and
human population density. The NDVI is an indicator
of the vegetative vigor and potential water availabil-
ity and is significantly associated with abundance
(Yoo 2014) and distribution of mosquitoes (Diuk-
Wasser et al. 2006). NDVI was calculated using the
standard formula ([NIR� Red]/[Redþ NIR]; NIR¼
near infrared) from spectral imagery downloaded
from the US Geological Survey Global Visualization
Viewer (USGS 2016) for 2 dates, July 1 and October
5, 2014. These dates had less than 10% cloud cover,
were representative of warmer and cooler times of
the study, and thus served as a representative sample
of NDVI during the survey period.

Human population density was included as a
variable here because Cx. quinquefasciatus is
thought of as an anthropophilic mosquito (Murty
et al., 2002) that uses small pools of standing water
around human settlements (ditches, French drains,
flower pots). Human population density has also
been significantly associated with mosquito abun-
dance in other species with affinity for humans (Yoo
2014). Density was calculated from census block
information downloaded from the US Census
Bureau (USCB 2016).

Mosquito control data included larviciding and
adulticiding records collected and maintained by
individual municipalities and TCPH. These data were
compiled at the request of TCPH and released to the
authors for the purposes of this study. Treatment data
composition was heterogeneous between the collect-
ing entity and ranged from hand-written descriptions
of treatments with general descriptions of locations,

and chemicals and quantities used (particularly for
larvicide records), to high-resolution, geographic
information system–generated maps of adulticide
applications. All treatment data were digitized and
migrated into ArcGIS 10.3. While adulticide infor-
mation was area-based, larviciding information
consisted of both point and spatial area information.
To standardize data across sources, larvicide infor-
mation was converted into an area context by
extending 10 m polygon buffers around larviciding
points. Owing to the heterogeneity of collected data,
particularly larvicide records, application date was
the only consistently associated auxiliary information
and thus was used to indicate the influence of
treatment in the model. Treatment measures included
the total number of larviciding or adulticiding events
within a time interval (e.g., total events in week 3) or
the total areas treated with larvicide or adulticide
within a time interval.

Mosquito populations are expected to respond to
population drivers at a localized scale, but several
traps in urban areas were near each other (i.e., less
than 400 m apart). In order to maintain indepen-
dence of data between spatially specific predictor
variables, a 100-m buffer was extended around trap
locations to extract habitat and treatment data. This
buffer distance was within the spatial range of other
studies examining the association of spatial vari-
ables and Cx. quinquefasciatus in urban environ-
ments (Landau and Leeuwen 2012, Leisnham et al.
2014). In addition, because we did not know the
temporal lags that existed between treatment and
weather variables and their influence on population
dynamics in Tarrant county, treatment and weather
information were aggregated into temporal inter-
vals (1–4 wk) prior to any given surveillance
record.

Prior to analysis, a quality assurance process was
undertaken to improve the comparability of longitu-
dinal data between trapping locations. The process
included only traps that were categorized as ‘‘static’’
(as opposed to temporary) and that had a total
number of data points (i.e., sample weeks) for the
sample period that was at least 50% of the trap with
the most data points (25). Trapping records were
excluded where trap effectiveness was questionable,
including trap malfunctions, high wind, or precipita-
tion during trap setting. This resulted in a total of 53
traps and 1428 observations available for model
construction.

Statistical analysis and model construction

Mosquito counts were modeled using general
linear mixed modeling with the lme4 package (Bates
et al. 2015) in program R (R Core Team 2017).
Count data were log þ 1 transformed (to include 0
observations) prior to inclusion in the modeling
process. Although a Poisson or negative binomial
regression approach would ostensibly be more
appropriate, since the response variable (mosquito
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counts) was discrete (Yoo 2014, Caputo et al. 2015),
preliminary analyses using these methods produced
poor model fit due to the large spread of count values
(e.g., 0–2000). Previous modeling efforts of mosquito
counts have included log transformed counts to
improve model fit (Brown et al. 2011). Mixed
modeling was used here to account for trap and
municipality-specific dependencies. All predictor var-
iables were centered and standardized by dividing
variables by 2 times their standard deviation to
facilitate numerical parameter estimation and to aid
in model interpretation (Gelman 2008). Model com-
parison and selection was accomplished using the
Akaike information criterion for small sample sizes
(AICc; Anderson 2008, Ganser and Wisely 2013):

AICc ¼ AICþ 2kðk þ 1Þ
N � k � 1

; ð1Þ

with k equal to the number of parameters and N equal
the number observations, to evaluate the relative fit of
models at each step. Though the sample size was
reasonably large in this study (1428 observations),
AICc is generally superior to AIC (Anderson 2008,
Ganser and Wisely 2014).

The model construction process started by identi-
fying the best temporal aggregation of temporally
varying variables (precipitation, temperature, adulti-
cide, larvicide). This included considering predictors
averaged within a week of surveys (to capture the
influence of the predictor on capture rates), and 2–4
wk prior to count surveys. The best predictor from
each group was determined by fitting univariate
models at each temporal aggregation (average per
week, or aggregation over 1 wk), and selecting the
best supported model using AICc. Next, these
variables were combined with variables considered

constant over the study period (NDVI, human
population density) into a global model.

With the global model, the best random structure
was determined using restricted estimation maximum
likelihood (Zuur et al. 2009; Table 1). From the
global model, submodels were derived containing all
combinations of variables with the following caveats.
First, the most basic plausible model was considered
to consist of only weather variables. Thus, all
submodels considered included the best supported
combination of weather variables (average precipi-
tation over 2 wk prior to survey, average temperature
4 wk prior to survey, and their interaction). Second,
because treatments largely occurred when mosquito
populations and thus temperatures were higher, all
models including adulticide and larvicide treatment
terms also included interaction terms with tempera-
ture. These caveats resulted in the fitting of 416
unique models using maximum likelihood (Zuur et
al. 2009).

A set of most supported submodels was deter-
mined by calculating AICc difference (e.g., dAICc)
and selecting all sub models with dAICc � 2. This
resulted in 7 submodels (Table 1). To address model
selection uncertainty, models in the final set were
averaged by the ‘‘natural average’’ method described
by Anderson (2008; Table 2) to produce a final
average weighted model using the AICcmodavg
package (Mazerolle 2016). Random intercept terms
were included from the top model in this set.
Diagnostics for the average model included a visual
examination of the distribution of residuals for
adequacy of fit, homogeneity of variance, and
normality using graphical techniques.

The root mean square error (RMSE; Brown et al.
2011) was used to assess model performance,
calculated as

Table 1. All variables included in the global model. Shown are category of the model term (fixed, interactive, random),
class of variable (weather, habitat, treatment), and specific variable of interest. Note that all temporally varying variables
except temperature included a representative of both the survey week and at the best supported longer term (2–4 wk).

Model term Category Variable

Fixed Weather variables Temperaturewk 4

Precipitationsurvey wk

Precipitationwk 2

Habitat NDVI
Population density

Treatment Adulticidesurvey wk

Adulticide4 wk cumulative

Larvicidesurvey wk

Larvicide4 wk cumulative

Interactive Weather Temperaturewk 4 3 Precipitationwk2

Habitat NDVI 3 Population density
Weather and habitat Precipitationwk 2 3 NDVI

Precipitationwk 2 3 Population density
Weather and treatment Temperaturewk 4 3 Adulticidesurvey wk

Temperaturewk 4 3 Larvicidesurvey wk

Temperaturewk 4 3 Larvicide4 wk cumulative

Temperaturewk 4 3 Adulticide4 wk cumulative

Random Intercepts Municipality
Trap ID
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rðobserved� predictedÞ2

n

s
;

with smaller values indicating better overall predic-
tive ability. An overall RMSE was calculated for the
model, as well as values for each municipality and
trap location. To provide an estimate of model
stability, a leave-one-out cross-validation procedure
was performed in which the final average model was
refit using all but a single data point, and the newly fit
model is used to predict the missing data point. The
process was repeated for all data points, and an
RMSE was calculated between the predictions from
the full data set (n) and the corresponding points in
the n� 1 dataset.

RESULTS

The global model consisted of 9 variables, and 8
two-way interactions (Table 1). The best random
structure included intercepts for both municipality
and trap ID. When all submodels were compared
using AICc, the best supported set of models � 2
dAICc of the top model accounted for approximately
26% of overall AIC weight of the 416 models
considered. Each of the 7 models in this set contained
at least 1 representative of habitat and treatment
variables along with required weather variables.
When these 7 models were averaged, they produced
the following final model:

logðCountþ 1Þ
¼ Interceptþ Adulticidesurvey wk

þ Larvicidesurvey wk þ Precipitationsurvey wk

þ Larvicide4 wk cumulative þ Adulticide4 wk cumulative

þ Temperaturewk 4 avg þ Precipitationwk 2 avg

þ Population Densityþ NDVI

þ Temperaturewk 4 avg 3 Preciptationwk 2 avg

þ Temperaturewk 4 avg 3 Adulticidesurvey wk

þ Temperaturewk 4 avg 3 Larvicide4 wk cumlative

þ Temperaturewk 4 avg 3 Larvicidesurvey wk

þ Adulticide4 wk cumulative 3 Temperaturewk 4 avg

þ Precipitationwk avg 3 Population Density

þ Random Interceptmunicipality

þ Random InterceptTrap þ Error:

Model coefficients, unconditional standard er-
rors, and 95% confidence interval (CI) for each
parameter in this model are shown in Table 2.
Based on 95% CIs calculated via unconditional
standard errors, there were 8 significant variables in
the final average model, including the main effects for
Larvacide4 wk cumulative, Adulticide4 wk cumulative,
Precipitationwk 2, Temperaturewk 4; and the interactions
between Temperaturewk 4 and Larvicide4 wk cumulative,
Temperaturewk 4 and Larvicidesurvey wk, Temper-
aturewk4 and Larvicidesurvey wk, and Precipitationwk 2

and Population Density.

Table 2. Parameter estimates for final, averaged model. The top table includes all fixed parameter estimates with their
unconditional standard errors and the 95% CI. The bottom table includes standard errors for the estimated random effects
for the intercepts for municipality and trap ID. A total sample size of 1428 observations was used to construct the final

model.

Parameter Estimate Unconditional SE

95% CI

Lower bound Upper bound

(Intercept) 2.453 0.241 2.057 2.849
Adulticidesurvey wk 0.312 0.252 �0.103 0.727
Larvicidesurvey wk 0.109 0.098 �0.052 0.269
Larvicide4 wk cumulative 0.271 0.125 0.065 0.476*
Adulticide4 wk cumulative 0.233 0.142 0.0002 0.466*
Precipitationsurvey wk 0.125 0.092 �0.027 0.276
Population density �0.012 0.207 �0.353 0.329
NDVI 0.146 0.185 �0.159 0.451
Precipitationwk 2 �0.668 0.091 �0.818 �0.518*
Temperaturewk 4 2.528 0.087 2.386 2.671*
Temperaturewk 4 3 Adulticidesurvey wk �1.004 0.500 �1.827 �0.182
Temperaturewk 4 3 Larvicide4 wk cumulative �1.205 0.295 �1.690 �0.720*
Temperaturewk 4 3 Larvicidesurvey wk 0.701 0.249 0.291 1.110*
Temperaturewk 4 3 Precipitationwk 2 0.296 0.189 �0.015 0.607
Precipitationwk 2 3 Population density 0.331 0.145 0.092 0.571*
Temperaturewk 4 3 Adulticide4 wk cumulative �0.337 0.365 �0.936 0.263
Random intercepts Std Dev.
Municipality 0.578
Trap ID 0.551
Residual 1.316

* Statistical significance at the a ¼ 0.05 level.
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The main effects of significant treatment variables
in the model were positive. The significant interac-
tions of all treatment variables with temperature (i.e.,
Temperaturewk 4 avg) were negative except for the
interaction with Larvicidesurvey wk. This resulted in a
temperature threshold of approximately 278C, above
which increasing treatment resulted in lower mos-
quito counts. Conversely, under this temperature
threshold the model predicted higher counts with
increasing treatment.

The average model had an overall RMSE of 1.296.
Predicted counts at all locations followed the inverse
parabolic pattern of observed counts, since mosquito
abundance fluctuated with seasonal temperature (see
Fig. 2 for predicted log counts versus observed log
counts at a representative selection of traps).
However, municipalities and individual traps varied
in performance in RMSE from a low of 0.89 at a trap
in South Lake Colleyville to a high of 2.03 at a trap
in Arlington (Fig. 3). Lastly, the leave-one-out
stability analysis resulted in a RMSE of 1.35 between
the predicted counts and the observed counts.

DISCUSSION

The final average model of log counts was
generally consistent with known correlates of
mosquito population dynamics in general, and Cx.
quinquefasciatus in particular. Temperature had the

largest effect on log counts, as indicated by the
relative size of the b coefficient in the model and the
strong parabolic seasonal pattern of predictions
across all locations (Fig. 2). Temperature is well
recognized to influence mosquito ecology, including
larval development and survival, gonotrophic cycle
length, dispersal behavior, and adult survival (Clem-
ents, 1992, 1999). Increasing temperature increases
larval development (Rueda et al. 1990, Ciota et al.
2014) and, within the range of 208C–308C (which
includes approximately 69% of the observations of
this study), increases survival in Cx. quinquefasciatus
(Rueda et al. 1990). Although high temperatures
(.308C) have been shown to reduce survival and
influence the blood-feeding patterns of Cx. quinque-
fasciatus and other Culex mosquitoes (Ciota et al.,
2014), temperatures .308 only occurred ,10% of
the time. Thus, temperature in the model likely drove
abundance patterns due to the influence of temper-
ature on physiological processes. Interestingly, a
significant reduction in abundance occurred at the
end of the season in all locations (Fig. 2), which was
not captured by the model. Culex quinquefasciatus,
unlike congener Cx. pipiens, does not exhibit a
seasonal diapause (Hayes 1975, Ciota et al. 2014,
Meuti et al. 2015) but does exhibit seasonal
quiescence in response to lower temperatures (Nelms
et al. 2010, Diniz et al. 2017). The sharp reduction in
activity here beyond what is predicted by tempera-

Fig. 2. Predicted log counts of Cx. quinquefasciatus (blue crosses) versus observations (red triangles) at 4
representative trap locations, including traps in North Richland Hills, a trap in unincorporated Tarrant County, Arlington,
and Colleyville, over the calendar year 2014 (Julian date is indicated on the bottom left and top margins of the graph).
Although all count predictions follow the general parabolic pattern based on temperature, accuracy of predictions depended
upon trap location.
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ture likely indicates that other environmental drivers,
such as photoperiod or humidity, may influence
quiescence (Diniz et al. 2017).

Temperature also played an important role in how
treatment variables influenced mosquito counts in the
model (Table 2). Of note is that only interactive
effects of some significant treatment variables
(Adulticidesurvey wk, Larvicide4 wk cumulative) resulted
in the prediction of lower mosquito counts with
increasing treatment, and then only above a temper-
ature threshold; a prediction of higher counts with
increasing treatment resulted below the threshold.
The reasons for these interactions are unclear.
However, one hypothesis is that this is due to the
influence of seasonal temperature on population

dynamics. When average temperatures were higher
than the identified threshold (278C, approximately
June–September), additional population growth due
to temperature was limited, resulting in the expected
negative relationship between mosquito counts and
treatment. In contrast, when temperatures were below
the threshold (especially earlier in the season),
mosquito populations were naturally rising due to
seasonal temperature increases. So, larviciding or
adulticiding during this period may have resulted in
an apparent association with higher counts. This may
be especially the case for Larvicide4 wk cumulative and
Adulticide4 wk cumulative, since they represented
aggregated treatment over 4 wk prior to surveys. It
is also possible that there were actual changes in the

Fig. 3. Trap locations and their relative root mean square error (RMSE) rates. Light yellow colors indicate lower
RMSE and better agreement with the model, and darker red colors indicate larger RMSE and worse agreement with the
model. Municipality outlines are indicated. Trap locations not within a municipality are in unincorporated Tarrant County
and monitored by the Tarrant County Department of Public Health.
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relationship between vector control treatment and
mosquito population dynamics over the course of the
season, such as more effective targeting of source
and adult populations as the season progressed. We
plan to address these questions in future iterations of
the model, particularly if additional years of data can
be acquired.

Two-week lagged precipitation and its interaction
with human population density were also significant
terms in the model and likely represented the
influence of larval habitat quality and availability
on mosquito abundance. Like all mosquitoes, Cx.
quinquefasciatus have a temperature-dependent de-
velopment rate with a time of emergence that ranges
from approximately 7 to 14 days in a temperature
range of 308C to 208C, respectively (Rueda et al.
1990). Although other studies have found support for
a 1-wk lag in precipitation prior to surveys as a
weather predictor of mosquito counts (Ganser and
Wisely 2014, Yoo 2014), a 2-wk lag here appears to
better align with Cx. quinquefasciatus developmental
biology (at least at warmer temperature ranges).
Although a negative sign for the precipitation
coefficient initially seems counterintuitive, mosquito
counts can be negatively associated with precipita-
tion in the short to intermediate term (i.e., weeks to
months). This result is due to the dilution of nutrients
in the aquatic habitats in which mosquitoes seek to
lay eggs (Chaves and Kitron 2011, Jian et al. 2014)
and the ability of heavy rains to flush eggs out of
aquatic habitats (Koenraadt and Harrington 2008).
Further, the production of Cx. quinquefasciatus is
known to be associated with nutrient availability in
the aquatic substrate (Noori et al. 2015), reflected by
the aging of infusion media prior to use in CDC
gravid traps (a length of time around 14 days for
TCPH) to develop enough nutrient content.

Previous studies incorporating similar habitat
predictors (Yoo 2014), as well as land-cover and
other habitat features (Ganser and Wisely 2014,
Leisnham et al. 2014, Schurich et al. 2014), found
strong impacts of habitat factors, with oviposition
habitat availability an especially important driver of
Cx. quinquefasciatus abundance (Leisnham et al.
2014, Murty et al. 2002). In this model, the main
effects of NDVI and human population density (used
here as a proxy for anthropogenic habitat availabil-
ity) were not significant, but a positive interaction
between human population density and precipitation
was significant. This suggests that, although greater
human density does not by itself increase counts of
Cx. quinquefasciatus, it may be a factor as precip-
itation increases. Culex quinquefasciatus are known
to use a variety of standing water to oviposit, ranging
from aboveground containers like flower pots in
urban areas and cemeteries to natural and anthropo-
genic catch basins (Leisnham et al. 2014), including
underground French drains (Nina Dacko, personal
observation). Thus, such an effect is likely due to a
greater abundance of anthropogenic oviposition
habitat made available with precipitation in areas of

higher human density. That the interactive effect is
positive (in contrast to the negative main effect)
suggests that increased habitat availability provided
by urban area during times of high precipitation may
partially offset negative influences of rainfall itself.
For dry regions like north-central Texas where
natural habitat may be scarce, this may represent a
tradeoff that drives the use of urban habitats by Cx.
quinquefasciatus.

Although overall model RMSE was relatively low
(1.29) and the leave-one-out RSME indicated that the
model was relatively stable, some locations were
clearly better predicted than others (Figs. 2, 3). This
may relate to insufficient characterization of ovipo-
sition site potential with the proxy habitat variables
used here (Murty et al. 2002, Leisnham et al. 2014)
Furthermore, precipitation and temperature informa-
tion collected from weather stations may have been
of insufficiently small scale to predict site-level
heterogeneity. Although preliminary work demon-
strated a high correlation between temperatures at
trap locations and weather stations (unpublished
data), precipitation, in particular, is prone to being
highly variable across landscapes and is an important
source of error in spatially explicit hydrological
modeling (Tetzlaff and Uhlenbrook 2005).

The primary limitation of this model is that it was
constructed using only a single year of data. This was
due to the mosquito control chemical application data
being relatively difficult to assemble due to different
curation methods between organizations, an appar-
ently common condition in the mosquito control
community. It is also worth noting that many
municipalities are reluctant to supply treatment data
to outside entities because of concerns that it will be
used to falsely portray the municipalities’ efforts or
to compare those efforts with those of another
municipality (Nina Dacko, personal observation).
Fortunately, there is increasing recognition regarding
the importance of maintaining spatiotemporal records
of mosquito surveillance and treatment records
(Eisen and Eisen 2011, AMCA 2018). This is
coupled with the commercial availability of both
manual and automatically operated global position-
ing satellite–enabled technology that collects spatio-
temporal information of treatment activity,
particularly the application of adulticides dispersed
from truck-mounted ultra–low volume spray devices.
Thus, there are expanding opportunities to incorpo-
rate treatment information into statistical models of
mosquito population dynamics.

This represents a first step in the use of data
collected by mosquito control authorities in Tarrant
County, Texas, toward 2 goals, namely, 1) providing
quantitative inference into mosquito population
dynamics in relation to environmental and treatment
effects and 2) providing the basis for the develop-
ment of operational tools. For the first goal, the
model clearly establishes a biological basis for
inferring population dynamics from environmental
and anthropogenic drivers. Importantly, mosquito
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control treatment was predicted to reduce mosquito
counts at the landscape scale under certain condi-
tions. Regarding the second goal, inconsistency in
predictive ability at different locations suggests site-
level factors, such as oviposition habitat, may not
have been adequately included in the current model.
Future work will focus on the incorporation of
additional habitat factors, as well additional years of
surveillance and treatment information, to better
model Cx. quinquefasciatus counts in Tarrant
County.
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