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ABSTRACT. Strategies to advance action threshold development can benefit both civilian and military vector
control operations. The Anastasia Mosquito Control District (AMCD) has curated an extensive record database of
surveillance programs and operational control activities in St. Johns County, Florida, since 2004. A thorough
exploratory data analysis was performed on historical mosquito surveillance and county-wide climate data to iden-
tify climate predictors that could be used in constructing proactive threshold models for initiating control of Aedes,
Culex, and Anopheles vector mosquitoes. Species counts pulled from Centers for Disease Control and Prevention
(CDC) light trap (2004–2019) and BG trap (2014–2019) collection records and climate parameters of temperature
(minimum, maximum, average), rainfall, and relative humidity were used in two iterations of generalized linear
models. Climate readings were incorporated into models 1) in the form of continuous measurements, or 2) for cate-
gorization into number of “hot,” “wet,” or “humid” days by exceedance of selected biological index threshold val-
ues. Models were validated with tests of residual error, comparison of model effects, and predictive capability on
testing data from the two recent surveillance seasons 2020 and 2021. Two iterations of negative binomial regres-
sion models were constructed for 6 species groups: container Aedes (Ae. aegypti, Ae. albopictus), standing water
Culex (Cx. nigripalpus, Cx. quinquefasciatus), floodwater Aedes (Ae. atlanticus, Ae. infirmatus), salt-marsh Aedes
(Ae. taeniorhyncus, Ae. sollicitans), swamp water Anopheles (An. crucians), and a combined Total Mosquitoes
group. Final significant climate predictors varied substantially between species groups. Validation of models with
testing data displayed limited predictive abilities of both model iterations. The most significant climate predictors
for floodwater Aedes, the dominant and operationally influential species group in the county, were either total pre-
cipitation or frequency of precipitation events (number of “wet” days) at two to four weeks before trap collection
week. Challenges hindering the construction of threshold models were discussed. Insights gained from these mod-
els provide initial feedback for streamlining the AMCD mosquito control program and analytical recommendations
for future modelling efforts of interested mosquito control programs, in addition to generalized guidance for
deployed armed forces personnel with needs of mosquito control but lacking active surveillance programs.
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INTRODUCTION

Mosquito control has evolved over the last century
to incorporate a large tool kit of tactics based on
mechanical control, chemical control, biological con-
trol, and the current practice of integrated vector
management (IVM) (Benelli et al. 2016, Patterson
2016). Integrated vector management is designed to
combine tactics from all 3 areas while emphasizing
the importance of understanding the biology and
ecology of mosquitoes, including differences
between life stages and species type (Beier et al.
2008, Lizzi et al. 2014, Marcos-Marcos et al. 2018).
Mosquito control is typically managed at the local
administrative level. Thus, with the large scope of
available control strategies paired with area-depen-
dent environmental, disease, and financial priorities,
vector control interventions and implementation strate-
gies vary widely between regional agencies (NACCHO

2017). The operational timing and initiation of control
is commonly based on action thresholds. An action
threshold, as defined by the United States Environmen-
tal Protection Agency (EPA) under the broad umbrella
of integrated pest management (IPM), is “a point at
which pest populations or environmental conditions
indicate that pest control action must be taken” (EPA
2022). Integrated pest management is primarily guided
by economic threats of agriculture, whereas IVM is
specifically motivated by risks of nuisance or transmis-
sion of vector-borne disease (VBD) from arthropod
vectors (Lizzi et al. 2014) such as mosquitoes, ticks,
sandflies, midges, and fleas (EFSA 2018). In this arti-
cle, VBD specifically refers to those diseases vectored
by mosquitoes. Vector-borne diseases are a global pub-
lic health concern, since mosquitoes vector a multitude
of arboviral and parasitic agents worldwide (Dahmana
and Mediannikov 2020). It is estimated 2.5–9.3% of
the »3,500 mosquito species are associated with a
human disease, with 76% of all known and/or potential
vectors belonging to the three genera of Anopheles,
Culex, and Aedes (Yee et al. 2022). It can be argued
that action thresholds for mosquito control are also a
response to economic threats, since VBDs lead to
financial and overall societal costs to the detriment of
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households (lost wages, treatment costs) to nations
(reduced labor force, slower economic growth, reduced
GDP) (WHO 2017). Historically to the current day,
vector control remains the primary way to prevent the
spread of VBDs, especially for those neglected tropical
diseases that lack an accessible vaccine or effective
clinical treatment (Wilson et al. 2020).
Successful IVM programs rely on active surveillance

of mosquito populations to inform control decisions
(AMCA 2017). However, alongside the differences in
chosen control strategies, action thresholds and overall
surveillance activities are rarely standardized between
local agencies due to variation in both operational capa-
bilities and public health priorities (Aryaprema et al.
2022). Action thresholds are triggered by exceedance of
predetermined values assessed via passive or active sur-
veillance activities. Assessed surveillance factors most
commonly include human or animal disease case reports,
presence or abundance of adult mosquitoes, mosquito
larval indices, mosquito landing rate counts, arbovirus
detection, sentinel animal seroconversion, and service
requests from community members (AMCA 2017). The
thresholds enforced by mosquito control programs to ini-
tiate control can include district level decisions on top of
(but still compliant with) codified legislative justifications
to account for the nuances of control methods enacted by
different programs. This is in addition to the nuanced
necessity for implementing a certain method versus oth-
ers which requires weighing decisions based on informa-
tion such as the seasonality, perceived issue (e.g., excess
pest biting, VBD case reports), and extent of geographic
coverage required (e.g., aerial spraying over several sub-
divisions versus ground ULV spraying on one street).
Most action thresholds are inherently reactive and are
more than likely triggered timeline-wise on a date that
temporally surpasses the temporal period when initiation
of control activities would have more effectively pre-
vented the start of nuisance issues or disease transmission.
In a recent survey of global mosquito control pro-

grams, some programs in the United States, Asia, Africa,
and Australia reported that they do not have a designated
action threshold or follow any regional or military guide-
lines, even if they collect the necessary basic surveillance
data to develop thresholds (Aryaprema et al. 2022). Inter-
national guidelines do exist with action thresholds for yel-
low fever and dengue that rely on Stegomyia indices
(WHO 1971, PAHO 1994, WHO 2009). Numerous stud-
ies have utilized these thresholds as a target for opera-
tional control or a baseline to compare study results
(Aryaprema et al. 2023), but the overall generalizability
and effectiveness of such indices is under question (Focks
et al. 2004, Bowman et al. 2014). There is a lack of stan-
dardized guidelines for programs to develop their own
action thresholds with or without utilization of historical
surveillance data. A recent literature review of action
thresholds found a limited number of studies from the last
decade that used empirical methods to develop an objec-
tive threshold value or a threshold model (Aryaprema
et al. 2023). Those threshold studies, although focused
primarily on control of Aedes species and dengue,

described numerous methods to develop a proactive oper-
ational threshold using common surveillance parameters.
Importantly, most studies incorporated mosquito surveil-
lance counts into development and/or the final threshold
index value. Only a few instead created thresholds based
on local climate measurements such as temperature, rain-
fall, and relative humidity. Previous literature has made
evident that these weather variables can impact the
development, behavior, reproduction, and mortality
of mosquitoes (Gage et al. 2008), albeit to various
degrees dependent on species, study location, study
design, etc. (Aryaprema et al. 2023).

Overall, there is an increasing need for proactive and
evidence-based action thresholds that are sustainable
and realistic to implement at local levels. It is also
important to create more generalizable action thresh-
olds that do not rely on the typical surveillance of mos-
quito counts or disease cases, especially for entities that
do not have the resources for sustainable surveillance.
Action thresholds based on local climate measurements
would be a good solution to address this issue. The pri-
mary motivator for this study is that many pest manag-
ers deployed in US military operation zones abroad
lack both sufficient vector control guidelines and rou-
tine mosquito surveillance systems. In the event of a
pest issue, the Armed Forces Pest Management Board
(AFPMB) provides support to global military installa-
tions through deployment of a limited number of spe-
cialized personnel. Integrated pest management
technical guidelines exist (AFPMB 2013) but do not
specify direct action thresholds to trigger proactive con-
trol activities. For an already problematic situation,
there will be a delay in arrival of specialized personnel,
assessment through temporary surveillance activities,
and initiation of appropriate control measures. There-
fore, there is crucial time lost and risk accrued when an
issue does arise because of the reactive response proto-
col. An optimal action threshold would entail 1) pas-
sively collected input parameters that do not require
resource-heavy data collection protocols, 2) generaliz-
able values that account for different ecological niches
across genera and environment type, and 3) alert for
upcoming rather than current nuisance/disease trans-
mission issues with several weeks of lead-time.

The Anastasia Mosquito Control District (AMCD)
in St. Johns County (SJC), Florida, utilizes an IVM
approach with routine mosquito and arbovirus surveil-
lance activities followed by a combination of adult and
larval control techniques. Adult control by the AMCD
is prioritized following one of the few legislative action
thresholds set forth by the rule 5E-13.036 of the Florida
Administrative Code and Florida Administrative Regis-
ter that states the minimum threshold is met if “adult
mosquito populations build to levels exceeding 25 mos-
quitoes per trap-night or 5 mosquitoes per trap hour
during crepuscular periods” (Florida Department of
State 2006). AMCD’s threshold for larval control is $
1 larva per dip into a water body. In addition to weekly
mosquito trap threshold, other surveillance parameters
that factor into operation control decisions include a
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positive sentinel chicken seroconversion (West Nile
virus, St. Louis encephalitis virus, and eastern equine
encephalitis virus), service requests, and the knowledge
and intuition of operator personnel. Data from all sur-
veillance programs and operational activities have been
recorded and digitally archived since 2004.

The main objectives of this study were to 1) explore
the analytic capacity of AMCD historical mosquito sur-
veillance records, 2) determine key variables for pre-
dicting optimal initiation of mosquito control using
historical records in conjunction with public climate
data, and 3) optimize proactive and generalizable cli-
mate -based action threshold for controlling mosquito
genera of public health concern. The results published
here significantly address the first two objectives while
yielding guidance for understanding the needs and limi-
tations of accomplishing the third objective, which was
unsuccessful for reasons discussed here.

MATERIAL AND METHODS

Data collection and mining

The two trap systems for mosquito surveillance at
AMCD are 1) BG traps with BG lure and CO2 (dry
ice) attractants (BG) and 2) CDC light traps with octe-
nol lure stick (CDC LT). Centers for Disease Control
and Prevention LT data has been collected since 2004
while BGs have been in use since 2014. Both trap sys-
tems are a weekly responsibility during the active sur-
veillance season. Traps are set out in designated
locations on a consistent weekday morning and then
picked up the following morning, with approximately
24 h of total field deployment. BGs are placed only in
the coastal downtown city of St. Augustine for approxi-
mately 48 wk of the year; meanwhile, CDC LT are set
out throughout the entire county for a shorter active
season, March/May–December (Fig. 1). After pickup,
the trap collections are transported to AMCD for identi-
fication to species level using appropriate taxonomic
keys (Darsie and Ward 2005). Total species counts
(female only) for each individual trap site are recorded
both in an Excel surveillance record template and
AMCD’s online database.

For this study, the AMCD database was mined and
curated to best format the historical records for analysis
using a mixed bag of software tools including Excel
(Microsoft; Redmond, WA, USA), ArcMap v.10.8
(Esri; Redlands, CA, USA), and R v 4.1.0 (R Founda-
tion for Statistical Computing, Vienna, Austria) along-
side manual examination of weekly records to find
events of trap inactivity. As seen in the original surveil-
lance record sheets, each year commonly had instances
that a trap site was clearly not an accurate measure of
mosquito counts. These instances were due to either
trap dysfunction (dead battery, full of water, stolen) or
lack of deployment (holiday, bad weather conditions).
These instances were important to find and mark as
data points with null values “NA” instead of a value of
“0” to avoid skewing of statistical analyses as much as
possible. A simple summary of all trap locations,

surveillance season duration, and geographic coordi-
nates was updated for each year for future analyses
using these historical data. The number and geographic
distribution of CDC LT varied during the sixteen-year
timespan (2004–2019) with the minimum of active sea-
sonal traps in 2015 (n ¼ 30) and a maximum in 2006–
2007 (n ¼ 52) (Fig. 1). Comparatively, BG locations
remained consistent from 2014–2019, aside from the
increase in trap locations between 2014 and 2016 (n ¼
6) to 2017–2019 (n¼ 12).
A timeline of epidemiological weeks (epiweek) was

developed to match collection days across trap systems
and years. Each epiweek was set as Monday–Sunday
to match the start of AMCD’s workweek and opera-
tional surveillance and control activities. Daily readings
of total rainfall, minimum temperature, average temper-
ature, and maximum temperature were retrieved via the
Climate Data Online Search tool (National Oceanic and
Atmospheric Administration) from a weather station
located in a township of St. Johns County, FL (Hastings
4 NE, FL US GHCND: USC00083874; 29.7652°,
�81.4697°) (Fig. 1). Daily relative humidity data were
retrieved from the Florida Automated Weather Network
(FAWN) (University of Florida Institute of Food and
Agriculture Sciences Extension), which sourced from a
nearby station in the same township (FAWN ID: 270;
29.69332°, 81.44485°). Daily climate values were aver-
aged (temperature, relative humidity) or summed (rain-
fall) across each epiweek to calculate the final climate
parameters of minimum temperature (tmin), maximum
temperature (tmax), average temperature (tave), total
rainfall (prcp), and relative humidity (rh) per epiweek.
Out of approximately 40 mosquito species present in

St. Johns County, 8 were chosen as the focus of model-
ing efforts due to their higher abundance in the county
and known/suspected status as vectors of infectious
human disease agents including West Nile virus, Chi-
kungunya virus, Zika virus, dengue virus, Yellow Fever
virus, Mayaro virus, eastern equine encephalitis virus,
Japanese encephalitis virus, La Crosse encephalitis
virus, St. Louis encephalitis virus, malaria Plasmo-
dium, and Keystone virus. Species counts of Aedes tae-
niorhynchus (Wiedemann), Ae. sollicitans (Walker),
Ae. atlanticus (Dyar and Knab), Ae. infirmatus Dyar
and Knab, Culex nigripalpus Theobald, Cx quinquefas-
ciatus Say, and Anopheles crucians were taken from
CDC LT records, whereas Ae. aegypti (L.) and Ae.
albopictus (Skuse) were taken from BG trap records.
This inclusion of species records from CDC LT versus
BG was based on the differential attraction of those
species to each trapping system with preference given
to CDC LT due to the larger sampling size. Species
were grouped in separate models according to genera
and basic ecological habitat, hereby referred to as “spe-
cies group” (Table 1). Another category named Total
Mosquitoes was created with the total number of all
mosquitoes collected, disregarding species level, at
each CDC LT site for each active surveillance week.
The value of “mosquito trap-night average” was calcu-
lated for each individual epiweek across all years using

52 JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION VOL. 40, NO. 1

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-05-09 via free access



the total number of mosquitoes (by species group)
divided by the total number of active (and presumed
functional) traps deployed that week.

Models #1—predictors: climate indices by epiweek

Training models and calibration: The first itera-
tions of models attempted to identify the best climate
predictors of species groups. A model for each species
group was constructed in SAS v. 9.4 (SAS Institute,

Cary, NC) using the functions PROC CORR and
PROC GLIMMIX for the steps of model parameter
selection and generalized linear modeling, respectively.
First, model parameter selection involved Pearson cor-
relation tests with each species group (mosquito trap-
night average) against the 5 climate parameters (tmax,
tave, tmin, prcp, rh) at 3 lag times each (1–3 weeks)
for a total of 15 climate variables (Fig. 2). Parameters
refer to the overall climate type, variables refer to any
parameter with a specific lag time. For a given climate

Fig. 1. Overview of AMCD’s mosquito surveillance program, 2004–2019; historical distribution and activity at each
unique seasonal trapping location. Urban area outlines that was focus for 2016 Zika surveillance and more BG trapping.
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parameter, the lagged variable with the most significant
p value and the highest magnitude of the correlation
coefficient r was selected for construction of a general-
ized linear regression model (GLM). PROC GLIM-
MIX with a defined negative binomial distribution was
next utilized to develop each GLM per species group.
Negative binomial regression is a common statistical
method for count data like mosquito collections
(Nedelman 1983, Li et al. 2016, Wright 2017) and is
preferred over the stricter assumptions of Poisson
regression when there is overdispersion, i.e., variance
is greater than mean (Lindén and Mäntyniemi 2011).
Consequently, a log link function was defined to link
the response outcome (mosquito trap-night average)
with significant predictors (epiweek, climate variable).

Y¼mosquito trap-night average

Y � Negative Binomial kð Þ

log kð Þ¼ b0þ bith epiweek ði¼ 1�51Þ þ bprcp � prcp
þ btave � taveþ btmin � tminþ btmax � tmax
þ brh � rh

The corresponding b coefficients for final models
include the intercept (b0), epiweek by individual

week (bith epiweek), and b of significant climate vari-
ables. Only the climate b coefficients are multiplica-
tive in the model equation. The parameter b0 is static
and bith epiweek is dynamic (1 coefficient per epiweek
1–51), but neither are affected or effect the inclusion
of novel climate data on output model predictions.
Backwards elimination entailed the initial inclusion
of all the top lagged climate variables (see equation
for potential final model structure) and one-by-one
removal of nonsignificant variables until only signifi-
cant parameters remained.
Of note, 3 years of mosquito collection records were

excluded when earliest iterations of Models #1 failed to
be generated, albeit with a different statistical analysis
method (ANCOVA). Exploratory data analysis revealed
that the years 2006, 2010, and 2017 were outliers of
annual precipitation and were noticeably drier (2006,
2010) or wetter (2017) years compared to the rest of the
2004–2019 period. Final training datasets for CDC LT
species groups covered the years 2004–2019 (except the
three outlier years), whereas BG covered all 2014–2019,
including 2017, due to the already reduced sample size
of years.
Testing models and validation: Mosquito counts and

climate readings from the 2020 and 2021 surveillance
seasons were employed as testing data. Data of those
two real-time seasons were specifically set aside as the

Table 1. Selected species based on status as potential disease vectors (worldwide capacity). Model species grouped by
genera and ecological habitat. Collection Totals and % Trap Type Total are summary statistics of 2004–2019 mosquito

collection counts from AMCD’s seasonal surveillance program records using CDC light traps and BG traps.

Species group Species Collection total % Trap type total Trap type

Total mosquitoes All species (n . 40) 752,444 100% CDC
Floodwater Aedes atlanticus 333,858 34.37% CDC

Ae. infirmatus 41,234 5.41%
Saltmarsh Ae. taeniorhynchus 155,857 7.29% CDC

Aedes sollicitans 1,118 0.31%
Standing Culex nigripalpus 56,232 8.43% CDC

Cx. quinquefasciatus 11,768 2.43%
Swamp Anopheles crucians 25,285 22.51% CDC
Container Ae. aegypti 5,128 5.73% BG

Ae. albopictus 15,164 39.82%

Fig. 2. Timeline of climate measurements in relation to mosquito trap deployment and collection records as included in
the Models #1. Daily climate parameters collated to weekly values: minimum (tmin)/maximum (tmax)/average (tave) tempera-
ture, precipitation (prcp), average relative humidity (rh) at 1–3 wk time lags (time lags are suffixed to each parameter).
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exploratory analyses and initial models were being
developed with 16 years of data. The models were
then applied to 2 current seasons to understand the
applicability of such models to future mosquito sea-
sons. Validation was explored in three ways: 1) pre-
dicted effect and significance of climate variables
on testing data, 2) magnitude of residual error, and
3) effectiveness of the model at predicting exceed-
ance of the current regulatory threshold of mos-
quito abundance. We first examined if the values of
b coefficients (significant or not) of climate param-
eters from testing models fell within the b coeffi-
cient 95% confidence interval (CI) of those from
training models. Secondly, the Root Mean Squared
Error (RMSE) was calculated using the residuals
(observed counts (O) minus expected (E)) and num-
ber of epiweek values (n) in testing data for each
species.

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0� Eð Þ2

n

s

Thirdly, calculations of specificity, sensitivity, accu-
racy, and the kappa statistic (to account for chance
agreement) were performed. The kappa statistic repre-
sents the difference of actual model agreement from the
agreement expected by chance, with agreement being
the capacity for the model to correctly predict true posi-
tives and true negatives. The threshold value of 25 mos-
quitoes per trap-night (regardless of species) represents
one of the State of Florida's current regulatory action
thresholds that is being adhered by the AMCD. We fur-
ther attempted to account for the reduced CDC LT col-
lection capabilities of individual “species groups” when
deployed with octenol lures alone, of which the catch
ratio was assessed to be 1:3 compared to traps deployed
with both octenol and a CO2 attractant (Xue et al.
2008). The secondary threshold for trap-night averages
was thus 8.33 (25 � 3). Weekly predicted or observed
trap-night averages below this threshold would be
counted as “0,” while averages above the weekly
threshold were counted as “1”. The “0” and “1” combi-
nations (predicted/observed) were categorized as true
positives (1/1; a), false positives (1/0; b), false negatives
(0/1; c), or true negatives (0/0; d).

Sensitivity:
a

aþ c
� 100

Specificity:
b

bþ d
� 100

Accuracy:
aþ d

aþ bþ cþ d
� 100

Chance agreement¼ aþ b
aþ bþ cþ d

� aþ c
aþ bþ cþ d

� �

þ bþ d
aþ bþ cþ d

� cþ d
aþ bþ cþd

� �
;

K¼ accuracy� chance agreement
1� chance agreement

Outlier Analysis

Models #1 results prompted a more thorough investi-
gation of outlier points in 2004–2021 mosquito and cli-
mate datasets. We distinguished weekly outliers by year
and conducted exploratory data analyses using compari-
son with climate. Results from this analysis guided deci-
sions for Models #2.

Models #2—predictors: number of days over
climate index threshold

Training models and calibration: The second itera-
tion models were based off results from the first
using a new paradigm. The same timeline for training
and testing data was used, except the initial 3
excluded years were re-included, and epiweeks of
influential (not outlier) trap-night averages were
removed according to species model.

Climate parameters again included tmin, tave,
tmax, prcp, and rh. Index threshold values were
chosen for the number of “hot,” “wet,” and
“humid” days based on exploratory data and outlier
analyses for each parameter. The rainfall parameter
prcp had one potential threshold value to test (. 0
inches) as “wet,” while three threshold degree mea-
sures were separately tested as “hot” for tmin (60°
F, 65°F, 70°F), tave (70°F, 75°F, 80°F), tmax (80°F,
85°F, 90°F), and as “humid” for rh (75%, 80%,
85%). A binary classification was ordered each day
as over “1” or under “0” the threshold value of a
certain parameter. The total number of days over
threshold was summed for each epiweek and com-
bination of epiweeks. To retain a lag period and
additionally investigate the statistical power of a
variable spanning more than one week, fifteen sepa-
rate temporal variables for each climate parameter
were tested (Fig. 3). These temporal variables
included the total of each individual epiweek indi-
vidually of 1 to 6 wk previously (n ¼ 6), and com-
bination lag totals (n ¼ 9) of 2 to 4 epiweeks
starting from the epiweek lagged 1, 2, or 3 wk pre-
viously. Spearman’s correlation was used to distin-
guish the temporal variable of greatest correlation
coefficient (q) magnitude at the individual lagged
epiweek and each 2, 3, 4 combination lag epiweek
for all three potential thresholds of tmin, tave, tmax,
and rh. Spearman was used in favor of Pearson’s
correlation for this iteration due to rank ordering of
ordinal climate values (i.e., number of days). The
optimal threshold index value for each temperature
and relative humidity parameter moved forward to
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modeling, alongside the top 4 temporal variables of
prcp with its 1 index threshold.

Matching the first iteration of models, negative
binomial regression with the log link function was
constructed; however, model development followed
a forward selection process.

Y¼mosquito trap-night average

Y � Negative Binomial kð Þ

log kð Þ¼ b0þ bith epiweek ði¼ 1�51Þ þ bhot � ð# hot daysÞ
þbwet � ð#wetdaysÞþbhumid �ð#humiddaysÞ

By species group, univariable models were built
for each top temporal variable (n ¼ 16). The most
optimal univariable climate model for each species
group (n ¼ 1-3) was isolated using criteria of
Akaike information criterion (AIC) and significant
p-value alongside minimization of Pearson Chi
Square/Degrees of Freedom (DF). The optimal
univariate parameters were then combined and
tested as a multivariate climate model until only
significant model parameters remained.
Testing models and validation: The same process

of examination for testing and validating the first iter-
ation of models was used for the second iteration.

RESULTS

Models #1

Training: model parameter selection: The selected
climate variables differed in lag time, significance,

and correlation strength between the species groups
(Fig. 4). Four of the species groups significantly cor-
related to at least one lag variable for all 5 climate
parameters, while relative humidity did not reach sig-
nificance for either Saltmarsh or Container groups.
Overall, prcp at a 2-wk lag (prcp2) was the most con-
sistent climate variable and was selected for inclu-
sion in 5 of 6 species group models (See Fig. 2 to
distinguish lagged climate variable names).
Training: GLM and calibration: Final parameters

in species group models were reduced to 1—2 cli-
mate variables, alongside the temporal class variable
of epiweek (Table 2). Predictors and estimated effect
differed between species group GLMs. The variable
prcp2 was the most common final predictor in five of
six species group models (excluding Swamp), and it
is the only significant climate variable for two mod-
els (Standing, Total Mosquitoes). Besides prcp2, a
single temperature parameter remained significant in
the final GLMs for Container (tmin1), Floodwater
(tmax3), and Saltmarsh (tmin3). Swamp stood out
because rh1 was the only significant climate parame-
ter, whereas rh failed to make the final cut in the
other GLMs. The parameter tave was eliminated
from all models due to its extreme collinearity with
other temperature parameters. The b coefficients
revealed that temperature parameters had a reductive
effect, while prcp and rh effects were instead aug-
mentative to the predicted trap-night counts. The epi-
week predictor had a significant effect in all models;
however, individual b coefficients by epiweek were
only significant for a portion of the season for Total
Mosquitoes (wk 21–43) and Container (wk 17–42),
or no weeks at all for the other species groups. A
least-squared means (LSMEANS) estimate of trap-
night averages was calculated for each species group
across each epiweek in a typical surveillance season

Fig. 3. Occurrence of climate measurements in relation to mosquito trap deployment and collection records as
included in the Models #2. Measured climate parameters: minimum (tmin)/maximum (tmax)/average (tave) tempera-
ture, precipitation (prcp), relative humidity (rh) at combination lag weeks (suffix “_X” indicates cumulative number
of “hot,” “wet,” or “humid” days across the named lagged weeks). Number of total ‘wet’ days in combination lag
week included total number of days with . 0 inches of rainfall. Number of “hot” days was determined by number of
days that exceeded certain index threshold of tmax (80 F°, 85 F°, 90 F°), tmin (60 F°, 65 F°, 70 F°), or tave (70 F°,
75 F°, 80 F°). Number of “humid” days was determined by number of days with rh over certain index thresholds
(75%, 80%, 85%).
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(CDC LT: 10-51; BG: 1-51) (Fig. 5). The estimates
reflected the observed frequency of epiweek events
in 2004–2019 (CDC LT) and 2014–19 (BG), and
thus future likelihood, that the trap-night average of a
certain species group surpassed either 25 mosquitoes
(Total Mosquitoes: n ¼ 180, Floodwater: n ¼ 80,
Container: n ¼ 25, Swamp: n ¼ 23, Standing: n ¼ 9,
Saltmarsh: n ¼ 3) or 8.33 mosquitoes (Total Mosqui-
toes: n ¼ 340, Floodwater: n ¼ 158, Container: n ¼
85, Swamp: n ¼ 152, Standing n ¼ 37, Saltmarsh
n ¼ 13).
Calibration (Table 2) was based on available diag-

nostics on model fit and residual diagnostics from the
GLIMMIX procedure (plots¼residual panel). One
avenue of model development included attempts to
pair variables from the same lag time. Half of the
final GLMs (Floodwater, Saltmarsh, and Container)
had two climate parameters from different lagged
weeks. The models were rerun after switching out
the lag time of one climate parameter (prcp) to match
the lag week of the other climate parameter (tmin/
tmax), and vice versa, and gauged model fit criterion
alongside the significance of the replacing variables.
No attempts to match lag weeks succeeded in minimiz-
ing AIC or Pearson Chi-Square/DF.
Diagnostics of residuals of the training GLMs

with quantile-quantile plots and histograms
revealed that error was relatively normally distrib-
uted, but there was heteroscedasticity and increased
spread as observed mosquito trap-night averages
increased. Outliers were examined but ultimately
not removed from training datasets (explained
below).

Testing: validation: Two GLMs (Total Mosquitoes,
Floodwater) were run with training GLM parameters
on climate testing data accurately reflected significance
of all model predictors. However, the prcp2 b coeffi-
cients were dissimilar and exceeded the training 95%
CI (Table 3). Meanwhile, the prcp2 b coefficients for
Saltmarsh and Container were within the training 95%
CI, but the predictors themselves did not reach signifi-
cance on testing data. The parameter tmax3 for the
Floodwater GLM was the only variable to remain sig-
nificant and land in the CI.

Testing GLMs for four species groups did not signifi-
cantly fit with any or all training GLM parameters. Epi-
week (but not climate) was significant for Container,
climate (but not epiweek) was significant for Standing,
and neither climate nor epiweek remained significant
for Swamp and Saltmarsh. The observation that epi-
week alone did not reach significance for 2020–2021
Swamp, Saltmarsh, or Standing data was unexpected.
The RMSE paralleled the problematic variation of resid-
uals in training model calibration but was much lower
in the models that failed to be significant in validation.
Total Mosquitoes and the most numerous species group,
Floodwater, had the largest error. Standing, Swamp,
then Saltmarsh had the least error. Residual plots for all
models had similar behavior of residuals; normal distri-
butions, but heteroscedasticity and greater spread as
observed mosquito trap-night averages increased.

The sensitivity, specificity, accuracy, and kappa
statistic differed between each species group and the
established (25) and trap-subjective (8.33) mosquito
threshold (Table 4). The kappa statistic landed in the
range of 0.20–0.40 between models, meaning the
models achieve a fair agreement with the ground

Fig. 4. Variable Selection (Models #1): Pearson correlation test results. Cells colored green are the lag time (in
weeks) of each climate parameter with the highest magnitude r and smallest significant p (a ¼ 0.05). Cell values are
r coefficients. * ¼ P , 0.0001.
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truth that is 20–40% better than chance alone (Landis
and Koch 1977).
The Total Mosquito model with the prcp2 variable

displayed the highest sensitivity, but the lowest

specificity, of all species group models with both 25
and 8.33 mosquito thresholds. Meanwhile, the mod-
els Floodwater and Container were more specific
than sensitive at the 25-mosquito threshold, but more

Fig. 5. Least squared mean output (Models #1). Count estimates of trap-night averages by epiweek. Cells are colored
to display approximate seasonal timing of population numbers that warrant adulticiding control measures. *BG traps are
deployed earlier in season than CDC light traps. Estimate (in orange) exceeds Florida regulatory action threshold ($ 25).
Estimate (in yellow) exceeds Florida regulatory action threshold ($ »8.33) if accounting for observed trap catch ratio of
CDC light trap paired with octenol vs CO2 (1:3).
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sensitive than specific at the 8.33-mosquito thresh-
old. Neither Standing nor Saltmarsh surpassed either
threshold during 2020 or 2021, which was correctly
predicted by models of both species groups with climate
testing data. Thus, both threshold values for the two spe-
cies groups were completely accurate and specific but
sensitivity could not be evaluated. Contrastingly, Swamp
also did not have observations surpassing the mosquito
threshold, but its model incorrectly predicted thirteen
weeks to surpass the 8.33-threshold which resulted in a
lowered specificity and overall accuracy.

Models #2

Training: model parameter selection: The selected
climate variables slightly differed in optimal lag and

combination lag variables, threshold temperature
indices, and correlation strength between the species
groups (Table 5). Excluding many Saltmarsh or Con-
tainer versus rh variables, most Spearman correla-
tions with climate variables during initial parameter
selection were significant at p , 0.0001 including all
top combination variables listed in the table. All cor-
relation relationships were positive (See Fig. 3 to dis-
tinguish lagged climate variable names).
Training: GLM and calibration: Univariate GLM

models with climate variables were tested and the
variables at optimal threshold indices and lag times
were combined into multivariate models (Table 2). In
this first exclusion stage, humid failed to reach any
significance with Saltmarsh or Container and was not
included in those multivariable model attempts. Total

Table 3. Model Quantitative Validation: (Models #1 and #2) Results of significance (F value) and estimated effect (b )
of final variables from training GLM when paired with testing data. b estimates for epiweek differs by individual week
(1–52) and are thus not reported here. RMSE of testing model using predicted versus observed mosquito trap-night counts
in 2020–2021 collection data. Testing models for Swamp and Saltmarsh were unsuccessful for Models #2, coefficients

and effect of climate predictors could not be observed.

Species group Training model predictors F value b RMSE

Models #1
Total mosquitoes prcp2* 18.25 0.515 26.75

epiweek* 4.36 –
Floodwater tmax3* 10.00 �0.163† 14.49

prcp2* 11.56 0.527
epiweek* 3.32 –

Saltmarsh tmin3 0.04 0.0175 1.27
prcp2 0.22 0.213†
epiweek 0.14 –

Standing prcp2* 14.19 0.602 2.72
epiweek 1.36 –

Swamp rh1 3.22 0.085 5.62
epiweek 1.32 –

Container tmin1 1.14 0.02 7.97
prcp2 0.93 0.083†
epiweek* 3.73 –

Models #2
Total mosquitoes hot123 1.64 0.075 30.75

wet2345** 48.53 0.200
humid1234 0.08 0.014†
epiweek* 4.3 –

Floodwater hot34 0.4 0.171 15.44
wet234** 42.39 0.278
epiweek* 2.12 –

Saltmarsh hot345 – – 1.24
epiweek – –

Standing hot345 0.45 0.195 2.59
wet23* 12.64 0.237
humid12* 7.27 0.353
epiweek 1.09 –

Swamp wet2345 – – 7.83
humid1234 – –
epiweek – –

Container hot1 0.53 0.047 4.22
wet23 0.66 0.030†
epiweek* 2.68 –

* Climate predictor from training model was significant (P , 0.05) in testing model.
** Climate predictor from training model was significant (P , 0.0001) in testing model.
† b estimate of climate predictor in testing GLM was within 95% CI of training.
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Mosquitoes and Standing were the only two groups
with all three climate parameters (hot, wet, humid)
included in the final GLM equation. Floodwater,
Container, and Swamp each included only two cli-
mate parameters in the multivariate model, while
Saltmarsh remained the singular univariate climate
model. Overall, the variables of wet and hot were
included in five final species group models with
humid only in three. Temperature threshold values
designating days as hot varied between the four spe-
cies groups; only Standing and Floodwater shared
the same optimal definition of “hot” as exceeding
daily tmax 80°F. Lag times of hot were also inconsis-
tent; however, hot thresholds based on tave (hot1,
hot123) relied on more recent time lags than those
based on tmax (hot34, hot345). All wet thresholds
were the same from the start (0 inches), and all final
lag combinations (wet23, wet234, wet2345) were
very similar in timing. The optimal humid variable
for the three including models has a consistent
threshold index value of 80% rh and consistent tim-
ing (humid12, humid1234).
Epiweek was significant in all models. b coeffi-

cients by individual week were again significant only
for Total Mosquitoes (wk 16-45) and Container (wk
14-45), a slightly broader range compared to Models
#1. The candidate GLMs for Models #2 for each spe-
cies group (n ¼ 2–5) were culled to one optimal
model using calibration diagnostics. Final models
and climate parameters are highlighted in Table 2.
Diagnostics of residuals of the training GLMs with

quantile-quantile plots and histograms revealed that
error was relatively normally distributed, but there was
heteroscedasticity and increased spread as observed
mosquito trap-night averages increased. The residuals
were more densely concentrated in the bottom half,
implying that the model tended to overestimate the
average mosquito trap count.

A LSMEANS estimate of trap-night averages was
again calculated across each epiweek in a typical sur-
veillance season (CDC LT: 10–51; BG: 1–51) (Fig.
6). The LSMEANS estimates between the Models #1
and Models #2 iterations had similar patterns; Salt-
marsh and Standing exceeded neither 25- nor 8.33-
mosquito thresholds, Swamp exceeded only 8.33,
while Total Mosquitoes exceeded both thresholds.
Contrastingly, Container and Floodwater LSMEANS
did not surpass the 25-mosquito threshold this time.
The LSMEANS estimates were also examined for
the other initial models (not shown). Notably, GLMs
built on the number of hot days versus the number of
wet days varied within a species group. For example,
Models #2 candidate models of Total Mosquitoes
and Floodwater involving only temperature (tmin,
tave, tmax) often had higher weekly estimates and
more weeks exceeding the 25-mosquito threshold
compared to models with only prcp. Meanwhile,
models with only prcp had estimates exceeding the
8.33-mosquito threshold earlier in the surveillance
season. Those built on only rh had similar early sea-
sonal exceedances of 8.33-mosquito threshold like
prcp models, however with greater estimates that
more often exceeded values of 8.33 or 25, dependent
on species.
Testing: validation: All GLMs built on testing data

lacked the significance of one or more training pre-
dictors, and the majority of b coefficients were dis-
similar and exceeded the training 95% CI (Table 3).
The prcp predictor (wet) remained significant in four
of five testing GLMs, rh predictor (humid) remained
significant in one of three, while none of the tempera-
ture (hot) variables remained significant. Like the
Models #1 iterations, the epiweek again remained
significant in Total Mosquitoes, Floodwater, and
Container and not significant with Standing. No
GLM could be built using Saltmarsh or Swamp

Table 4. Model categorical validation: (Models #1 and #2) Sensitivity, specificity, accuracy, and kappa statistic of each
species group model for predicting if mosquito count in 2020–2021 testing data would exceed chosen thresholds (25 or
8.33 trap-night mosquito average). Standing, Swamp, and Saltmarsh had observed mosquito trap-night averages below

both thresholds for all collection weeks in testing dataset.

. 25 mosquitoes . 8.33 mosquitoes

Species group Sensitivity Specificity Accuracy Kappa Sensitivity Specificity Accuracy Kappa

Models #1
Total mosquitoes 92.86 35.14 50.98 0.32 100.00 20.00 60.66 0.20
Floodwater 33.33 90.91 85.25 0.23 89.47 50.00 62.30 0.31
Saltmarsh – 100.00 100.00 – – 100.00 100.00 –
Standing – 100.00 100.00 – – 100.00 100.00 –
Swamp – 100.00 100.00 – – 78.69 78.69 –
Container 50.00 95.70 93.81 0.37 83.33 67.09 70.10 0.34

Models #2
Total mosquitoes 100.00 59.57 68.85 0.40 96.77 33.33 65.57 0.30
Floodwater 66.67 87.27 85.25 0.39 94.74 64.29 73.77 0.49
Saltmarsh – 100.00 100.00 – – 100.00 100.00 –
Standing – 100.00 100.00 – – 98.36 98.36 –
Swamp – 100.00 100.00 – – 60.66 60.66 –
Container 50.00 96.77 94.85 0.42 88.89 70.89 74.23 0.41
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testing data. b coefficients of humid for Total Mos-
quitoes (humid1234) and wet for Container (wet23)
were the only ones within the 95% CI while all other
b coefficients exceeded the 95% CI from training
GLMs.

The RMSE was highest in Total Mosquitoes, approxi-
mately double the next highest error measure seen with
Floodwater. The order of species group by RMSE
matched that of Models #1 iterations, except for a switch
between Container and Swamp, with Saltmarsh and
Standing again having the lowest error overall. Diagnos-
tics of residual plots matched those in testing of Models
#1, with increasing but equally distributed spread as
observed mosquito trap-night averages increased.

All sensitivity, specificity, accuracy, and kappa sta-
tistics results were the same or slightly improved
compared to Models #1 iterations, aside from the
decreased specificity and accuracy of the Swamp and
Standing GLM at the 8.33 mosquito threshold (Table
4). The kappa statistics landed in the range of 0.27–
0.49 between models, meaning the models achieved
a fair to moderate agreement with the ground truth
(Landis and Koch 1977).

Exploratory data analysis

There were outliers in the testing and training mos-
quito datasets that likely influenced the model accuracy;
however, removing natural ecological phenomena to
smooth the datasets was considered contradictory to the
aims of the study. In mosquito control programs, popula-
tion peaks are vital knowledge for operational personnel
to prepare for and manage as best possible. A secondary
exploratory data analysis on outliers’ post-completion of
Model #1 revealed patterns to follow up on. Annual cli-
mate and annual mosquito collections were also tested
against year in case of temporal patterns.
Outliers: Each season had frequent outliers in

mosquito trap-night averages (in context of statistical
distribution of values in timeframe) with 0–6 outliers
dependent on year and species. The Floodwater
group had on average the most outliers per season
(3.72, n ¼ 68, followed by Saltmarsh (3.11, n ¼ 56),
Container (2.88, n ¼ 23), Standing (2.39, n ¼ 43),
Total Mosquitoes (2.11, n ¼ 38), and lastly Swamp
(1.67, n ¼ 30). Species models differed in the aver-
age, minimum, and maximum values of trap-night

Table 5. Models #2 variable selection: Spearman correlation test results and top variables. The best 1/2/3/4-week combi-
nation of epiweeks with number of “hot” or “wet” or “humid” days were chosen for each climate parameter index value

based on magnitude of Spearman correlation coefficients (r ). Three threshold index values were tested for relative
humidity and each temperature parameter (tmin, tave, tmax). The index value with the highest magnitude r for rh, tmin,
tave, and tmax was included in GLM model building. All coefficients of top climate variables were significant at

P , 0.0001 (except Container with rh).

Top 1–4 wk combinations Correlation coefficient r

Species group Climate parameter Optimal index value 1 wk 2 wk 3 wk 4 wk 1 wk 2 wk 3 wk 4 wk

Total mosquitoes prcp . 0 in 2 23 234 2346 0.41 0.51 0.56 0.59
tmin 65 °F 1 12 123 1234 0.56 0.58 0.57 0.57
tave 75 °F 2 12 123 1234 0.54 0.56 0.55 0.55
tmax 80 °F 3 34 234 1234 0.46 0.49 0.50 0.54
rh 80% 1 12 123 1234 0.40 0.43 0.45 0.45

Floodwater prcp . 0 in 2 23 234 2345 0.44 0.54 0.60 0.62
tmin 65 °F 2 23 234 1234 0.56 0.58 0.59 0.60
tave 70 °F 3 34 345 2345 0.53 0.57 0.57 0.58
tmax 80 °F 3 34 345 3456 0.48 0.52 0.52 0.52
rh 75% 1 34 234 1234 0.37 0.45 0.46 0.48

Saltmarsh prcp . 0 in 2 12 123 1234 0.35 0.40 0.43 0.45
tmin 60 °F 3 34 234 1234 0.50 0.54 0.54 0.55
tave 70 °F 4 34 234 2345 0.52 0.54 0.54 0.54
tmax 90 °F 4 34 345 2345 0.48 0.51 0.54 0.55
rh 75% 1 12 123 1234 0.31 0.33 0.36 0.36

Standing prcp . 0 in 2 23 345 2345 0.28 0.34 0.38 0.41
tmin 70 °F 3 34 234 1234 0.38 0.37 0.38 0.38
tave 70 °F 3 34 345 3456 0.34 0.36 0.37 0.37
tmax 80 °F 3 34 345 3456 0.30 0.31 0.31 0.32
rh 80% 1 12 123 1234 0.32 0.34 0.34 0.35

Swamp prcp . 0 in 2 23 234 2345 0.28 0.35 0.37 0.40
tmin 65 °F 1 12 123 1234 0.38 0.39 0.39 0.37
tave 75 °F 1 12 123 1234 0.37 0.37 0.36 0.35
tmax 80 °F 1 12 123 1234 0.33 0.33 0.33 0.33
rh 80% 1 12 123 1234 0.30 0.32 0.33 0.33

Container prcp . 0 in 2 23 123 1234 0.34 0.40 0.42 0.43
tmin 60 °F 2 12 123 1234 0.61 0.64 0.63 0.62
tave 70 °F 1 12 123 1234 0.60 0.62 0.63 0.62
tmax 80 °F 1 12 123 1234 0.60 0.63 0.64 0.63
rh 75% 2 12 123 1234 0.25 0.28 0.28 0.27
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averages that were identified as an outlier during the
training and testing seasons (Table 6). Species groups
commonly displayed repeating outlier events over
2–4 consecutive weeks including Floodwater (n ¼ 15

years), Saltmarsh (n ¼ 7 years), Standing (n ¼ 8
years), Container (n ¼ 3 years), but less so Swamp
(n ¼ 2 years). These consecutive outliers were not
always simultaneous across species; Saltmarsh,

Fig. 6. Least squared mean output (Models #2). Count estimates of trap-night averages by epiweek. Cells are colored
to display approximate seasonal timing of population numbers that warrant adulticiding control measures. *BG traps are
deployed earlier in season than CDC light traps. Estimate (in orange) exceeds Florida regulatory action threshold ($ 25).
Estimate (in yellow) exceeds Florida regulatory action threshold ($ »8.33) if accounting for observed (1:3) trap catch
ratio of CDC light trap paired with octenol vs CO2.
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Floodwater, and Standing sometimes showed distinct
outlier epiweek clumps. The seasonal timing of out-
lier events differed percentage wise by species group
(Table 7), with the majority (50–71%) of outliers for
each species group occurring in the 3rd quarter of the
year (July–Sept; epiweeks 27–39).

Timing of outlier climate events is likely important
to the magnitude of effect imparted on mosquito pop-
ulations, particularly the synergy of temperature and
rainfall. There was no clear consistent order of spe-
cies group outliers during a surveillance season;
however, most outlier rainfall events did lead to an
outlier of one or more mosquito species groups 1–4
weeks later. Seasonal temperature showed interesting
changes over the 16-year time span. The variables
tmax and tmin had outliers that only started appearing
in 2014 and continued to pop up 1–3 times per fol-
lowing season. Of note, all these outliers were at
temperatures lower than the normal distribution. In
addition, correlation of annual climate trends versus
year (2004–2021) revealed a significant positive rela-
tionship with the tmax, tmin, and tave of average sea-
sonal temperature (Table 8) with annual temperatures
increasing approximately 1-3°F (with intra-annual
cycling) over the study period. The parameters for
prcp and rh did not show a distinct positive or nega-
tive trend. However, prcp outliers were common dur-
ing the study period with 1-5 outliers in 10 of 13
training years (average 1.72 outliers). The driest
year, 2006, had the most outliers (n ¼ 5) but these
outliers occurred mostly during the epiweeks periph-
eral to the active season (6, 8, 24, 51, 52). The wet-
test season, 2017, had the next most prcp outliers
(n ¼ 4) but these outliers occurred closer to the

middle of the active season (24, 37, 39, 40). Prcp
outliers were typically smaller in dry versus wetter
years. Approximately 10% of prcp outliers occurred
in the 1st quarter (Jan–March), 32% in the 2nd
(April–June), 39% in the 3rd (July–Sept), 19% in the
4th (October–December). There was no correlation
between the trap-night averages of species groups
and climate outliers by year.
The value of outlier trap-night averages in 2004–

2021 of each species group was broken down into
percentages of their individual species (Table 9). Pro-
portions between combined species for species
groups Floodwater (Ae. atlanticus 84.21%, Ae. infir-
matus 84.21%), Saltmarsh (Ae. taeniorhynchus
93.43%, Ae. sollicitans 6.57%), Standing (Cx. nigri-
palpus 87.08%, Cx. quinquefasciatus 12.92%), and
Container (Ae. aegypti 39.05%, Ae. albopictus
60.95%) closely reflect the percentages by trap type
(see Table 1), aside from the more closely matched
Ae. aegypti and Ae. albopictus. Unsurprisingly, the
dominant species in each species group by annual
quantity was also the dominant driver of outliers.
Correlation tests for annual climate versus annual

mosquito trap-night averages were run for individual
species. Total Mosquitoes (r ¼ 0.7718, p ¼ 0.0002),
Ae. atlanticus (r ¼ 0.6903, P ¼ 0.0015), Ae. infirmatus
(r ¼ 0.7185, P ¼ 0.0008), Cx. nigripalpus (r ¼ 0.5977,
P ¼ 0.008), and An. crucians (r ¼ 0.6402, P ¼
0.0042), had a positive correlation with total annual
prcp. Aedes aegypti had a positive relationship to tmax
(r ¼ 0.7447, P ¼ 0.0340), while the other container
species Ae. albopictus was negatively correlated to all
three temperature parameters: tmax (r ¼ �0.8521,
P ¼ 0.0072), tmin (r ¼ �0.8521, P ¼ 0.0072), and
tave (r ¼ �0.9019, P ¼ 0.0022). No correlations were
found with the rh parameter with Saltmarsh species
Ae. taeniorhynchus or Ae. sollicitans. Additionally,
both Ae. albopictus (r ¼ �0.7767, P ¼ 0.0234) and,
though barely significant, Cx. quinquefasciatus (r ¼
�0.4772, P ¼ 0.0452) had a negative relationship with
year itself.

DISCUSSION

The current literature includes numerous statistical
analyses conducted to understand the primary factors
driving the dynamics of mosquito species’ populations
and VBDs’ transmission. Fewer studies have constructed

Table 6. Summary statistics of outlier values of trap-
night averages isolated in training datasets (2004–2019).
The minimum, maximum, and average columns denote
each statistic calculated across all outlier epiweek events

within a species group.

Species group Minimum Maximum Average

Total mosquitoes 26.81 846.07 190.69
Floodwater 1.81 775.69 91.34
Saltmarsh 0.31 32.23 6.56
Standing 1.39 61.94 15.73
Swamp 2.54 64.63 21.50
Container 9.67 124.33 41.21

Table 7. Summary of the seasonal timing of outlier values of trap-night averages isolated in training datasets (2004–
2019). Each column denotes the specific number of outlier events and the percentage of total outliers, by species group,

during the 1st (wk 1–13), 2nd (wk 14–26), 3rd (wk 27–39), and 4th (wk 40–52) quarters of the year.

Species group 1st quarter 2nd quarter 3rd quarter 4th quarter

Total 0 4 (11%) 27 (71%) 7 (18%)
Floodwater 0 17 (25%) 38 (57%) 12 (18%)
Saltmarsh 0 14 (25%) 35 (63%) 7 (13%)
Standing 0 7 (16%) 30 (70%) 6 (14%)
Swamp 1 (3%) 11 (37%) 15 (50%) 3 (10%)
Container 0 9 (39%) 14 (61%) 0

64 JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION VOL. 40, NO. 1

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-05-09 via free access



empirical action thresholds with a direct value or cate-
gorical risk model of mosquitoes, climate, or disease
cases that can optimally trigger mosquito control activi-
ties (Aryaprema et al. 2023). This here is the first known
analysis to use historical control program data to create
dynamic lagged climate models for habitat genera
groups and to validate model effectiveness using current
operational thresholds.
Climate predictors have been historically associated

with dynamics of mosquito populations and disease
transmission. Importantly, we found in this study that
rainfall, temperature, relative humidity varied in sig-
nificance in estimating average trap-night counts
across separate species groups. Rainfall was the lead-
ing predictor across our models as determined by the
number of inclusions in final model equations. Tem-
perature was a close 2nd in significant impact while
relative humidity showed none to minimal impact in
most species groups, with clear contrast to the 2 final
models of Swamp, i.e., An. crucians. Observing such
a range in temperature predictors cannot be unex-
pected because mosquito species typically inhabit spe-
cialized ecological niches and can therefore be
differentially impacted by daily and seasonal climate
patterns. This observation was supported by tracking
population dynamics of species groups and individual
species. The abundance levels between species of a
group were clearly unproportionate, and thus models
based off the combination total of differentially active
species were of initial concern. A tangential analysis
of seasonal time points of reaching 5%, 50%, and
95% population numbers within a season (not shown)

revealed close dynamic trends between species com-
bined to a species group, and we felt the decision to
model this way was justified. Species that purportedly
share the same ecological habitat can be expected to
react similarly to routine environmental cycles or chal-
lenges. Biological differences may also account for
variation in population dynamics, as seasonal weather
can theoretically have delayed effects on the popula-
tions of following years through overwintering behav-
iors and egg desiccation.

This study also demonstrated that lag time was
critical to the significance of each climate parameter
and that climate threshold indices can be optimized
for separate species groups. Previous threshold mod-
els and generated climate thresholds rely on equivo-
cal climate measurements (Aryaprema et al., 2023).
Studies have differentially incorporated temperature
in the form of maximum, minimum, average, or
degree days, or compiled rainfall data into total or
averaged values. In this analysis we expected the cor-
relation between the three temperature indices, but
also saw a pronounced difference in the range of
daily and seasonal variation between minimum and
maximum temperature indices. Presumably, it would
be preferential for a certain ecological zone to rely
on the index that provides the most information about
changing climate. A more distinguished variation
would have a better chance of predicting variation in
the dependent variable, i.e., mosquito abundance.
Our exploratory analysis of climate baseline and out-
liers led to decisions to modify the format of climate
parameters. The Model #2 iteration was a specific

Table 8. Annual climate trends in training and testing data. Pearson correlation test results of annual climate values
(total prcp, average tmax/tmin/tave/rh) summarized per year versus increasing year (2004–2021).

Climate variable Mean Minimum Maximum r P value

prcp 54.11 31.42 77.07 –0.08 0.7469
tmax 80.21 78.32 82.03 0.60 0.0086
tmin 58.78 55.28 61.81 0.78 0.0003
tave 69.50 66.94 71.71 0.76 0.0001
rh 82.53 78.07 85.14 0.30 0.2228

Table 9. Quantitative analysis of seasonal population dynamics of individual species. The 5%, 50%, and 95% values of
species counts (not trap-night average) were calculated for every year. The quantity and timing (epiweek) of these check-

points were averaged across the entire study timeline, 2004–2021.

Trap-night average Epiweek

Species 5% 50% 95% 5% 50% 95%

Total mosquitoes 2,192 21,917 41,643 19 32 41
Aedes atlanticus 979 9,786 18,594 26 33 40
An. crucians 444 4,441 8,438 18 29 43
Culex nigripalpus 165 1,653 3,140 21 35 43
Ae. infirmatus 122 1,225 2,327 22 31 40
Ae. albopictus 109 1,093 2,077 15 28 41
Ae. taeniorhynchus 71 711 1,351 24 31 40
Ae. aegypti 53 526 999 22 30 43
Cx. quincefasciatus 35 351 668 16 29 38
Ae. sollicitans 3 34 64 22 31 37
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attempt to understand if the number of rainy days
was a more accurate predictor than the total amount
of rain. We additionally translated different threshold
values of temperature and humidity that correspond
to approximate physiological ranges associated with
mosquitoes to define optimal hot and humid days.
The lag time was stretched further to potentially cap-
ture longer delayed effects, and it was observed that
impact of minimum temperature and average temper-
ature had offset timings. Still, the predictors between
the 2 model iterations were closely matched, particu-
larly with the significant impact and timing of rain-
fall, and the no to low impact of humidity on all
groups except Swamp.

It is worthwhile to focus on the differences in those
models with iterations containing both rainfall and tem-
perature variables. The effect of average weekly tem-
perature matched or exceeded the effect of total weekly
precipitation in Models #1; meanwhile the number of
wet days had a far greater impact than the number of
hot days in Models #2. Relative humidity was signifi-
cant for more species groups in Models #2 than in
Models #1 although with minimal effect. Overall, it is
difficult to objectively state which model iteration per-
formed better. Only moderate accuracy was achieved
during validation tests by either iteration, albeit slightly
higher in Models #2, and the residual error steadily
increased alongside the observed trap-night averages.
These models are not intended to predict an exact count
of mosquitoes but to predict whether that mosquito
count will exceed a set threshold value. There was a
clear tradeoff between sensitivity and specificity using
the two validation thresholds tested. An 8.33-mosqui-
toes-per-trap-night average was more sensitive and
good at correctly predicting when the observed collec-
tions would exceed threshold (true positives), while the
25-mosquitoespertrap-night average had better specific-
ity and was good at predicting when the observed col-
lection numbers did not exceed threshold (rue
negative). A subsequent step would be to create
receiver-operating characteristic curves (ROC) to opti-
mize the threshold for model performance and strike
the balance between sensitivity and specificity. We did
not perform an ROC analysis in this study due to the
dominant limitations of ongoing operational control
activities that could not be properly addressed in the
models.

The third takeaway is that seasonality (aka epiweek)
was an important modifier to the effect of climate. The
significance of the epiweek b estimate did change from
week 1 to week 51 and was more reliably significant in
the middle of the season, aka the summer months, and
only for the most abundant species. This is likely an
artifact of the limitations of AMCD’s data collection
timeline limitations and the unproportionate abundance
of mosquitoes in different species groups. Exploratory
data analysis of temporal species dynamics revealed
jagged population curves for each species and all sur-
veillance seasons. Many of these peaks were distin-
guished as outliers, likely due to favorable climate

conditions or weather events preceding the population
spike. In the Model #1 iterations we did not exclude
outlier values of mosquito counts because of the
assumed inherent tie to climate predictors that were the
focus of our analysis. These models had generally poor
predictive capability particularly when trap-night aver-
ages surpassed 10–20 mosquitoes. There are no stan-
dardized guidelines to dealing with outlier values of
mosquito count data. We ultimately removed only
influential data points (extreme outliers) instead of all
statistically “unusual” trap-night averages. Mosquito
model publications may state the presence of outliers
but might fail to clearly mention what happens to such
data points whether modified, excluded, or included in
analysis (Lindahl et al. 2012, Bravo-Barriga 2017,
Reiskind et al. 2017, Giordano et al. 2021). Some stud-
ies do specifically state how outliers and/or extreme
outliers were defined and separately ran models with
and without (Okanga et al. 2013, Karki et al. 2016)
with Karki et al (2016) noting a more defined trend line
and statistical correlation between trap type collections
using datasets that excluded the outliers. We performed
an in-depth exploratory analysis on the occurrence of
the statistical outliers of mosquito counts in relation to
outlier values of weekly climate measurements. Indi-
vidual species varied by the quantity and frequency of
outlier events in weekly trap averages during the time-
line. The sudden population reductions in weeks fol-
lowing outlier population booms are most likely due to
targeted mosquito abatement activities in prioritized
zones. It is likely that if the trap site areas were left
uncontrolled, population trends would be far more
smoothed or continuing exponential curves and would
encompass our outlier points into the normal distribu-
tion of seasonal trap counts. The type and lag time of
important predictors are further impacted by the degree
to which a species is impacted by the activity of other
species, such as from intraspecies competition or action
threshold exceedance in the same operational zone.
This idea was discussed by Steck et al. (2021) based on
a comparison of seasonal population trends of Ae. atlan-
ticus versus Ae. infirmatus in SJC. Control operations
intended for one species, especially ultra-low volume
fogging missions, theoretically affect unproblematic spe-
cies before they reach their out peaks. The low values of
outlier events in Standing, Saltmarsh, and Swamp are
likely the result of premeditated management. Overall, it
is taken as a sign of the effectiveness of control opera-
tions that these species do not experience outlier events
or reach greater events of mosquito counts. In SJC,
Floodwater species, specifically Ae. atlanticus, are wide-
spread throughout the county and frequently exceed the
25-mosquitoes per trap-night average action threshold
value and are thus a leading trigger species for control.
Anopheles crucians can reach similar abundance levels
sufficient to trigger a fog mission, but contrastingly, high
trap counts go largely ignored and do not lead to a large-
scale adulticide application.
Another related question is how the amount of

total rainfall potentially switches from augmentative
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to reductive toward mosquito populations, and the
delayed effect of extreme and thus outlier weather
events. For example, Hurricane Irma hit SJC on Sep-
tember 12, 2017 (epiweek 37). Trap collections the
following 3 weeks were 37,51, 5,804, 228, then
15,589, respectively. Meanwhile, epiweek 33 had the
2nd highest collection of the season at 13,002 with
no major rainfall events but consistently rainy weeks
in the previous 6 wk (0.56–3.26 inches). An over-
abundance of rain has been shown to lead to a flush-
ing out effect of larval habitats and reductions in
disease transmission (Paaijmans et al. 2007, Dieng
et al. 2012, Seidahmed and Eltahir 2016, Benedum
et al. 2018). Another Florida mosquito control dis-
trict, overseeing Collier County in the southwest of
the state, associated a significant population crash
in their seasonal Ae. taeniorhynchus trap counts with
the impact of Hurricane Irma the season before
(Lucas et al. 2019). Extreme weather events like hur-
ricanes, monsoons, flooding, or simply above aver-
age rainfall may also result in novel or expanded
mosquito habitats that are associated with immediate
or delayed disease results (Barrera et al. 2019, Cail-
louët and Robertson 2020, Coalson et al. 2021).
It should be noted that there were numerous limita-

tions to our analysis. The methodology for model
development here incorporated the testing of various
iterations to resolve potential issues of masked or
overexposed statistical relationships due to the fickle-
ness of real-time ecological data. Statistical power
issues were encountered as is expected in IPM data-
sets that are guided by operational and logistic deci-
sions. The number and geographic placement of
AMCD trap sites, specifically CDC LT, greatly dif-
fered across surveillance seasons. The use of county-
wide trap-night averages for mosquito counts
reduced the spatial resolution and is a major limita-
tion of the analysis. We could not account for either
spatial autocorrelation or the climatic and environ-
mental variation within the county. A related sub-
limitation is any temporal or spatial population
changes in individual mosquito species at certain trap
sites. St. Johns County encompasses a 608-square-
mile area between the St. Johns River (approximately
14–19 miles inland) and the Atlantic coast, with a
parallel intercoastal waterway. Climate parameters
measured at one inland station are not the best repre-
sentation of all trap sites in the county, likely only
representing general seasonal trends, and certainly do
not capture microhabitat conditions. Southward in
Palm Beach County, FL, temperature and relative
humidity significantly differed with distances 0–15
km inland from the Atlantic coast in a study of the
changing population dynamics of Ae. aegypti versus
Ae. albopictus (Hopperstad and Reiskind 2016).
Logistically, any control program would rely on one
or very few weather stations to indicate overall
trends, even if at a coarse resolution. Temperature,
rainfall, and relative humidity are fundamental
through the literature covering nuisance and disease

vector species, particularly from the perspective of
understanding consequences due to climate change
(Reiter 2001, Caldwell et al. 2021). This analysis
showed statistical evidence of a gradual increase in
annual SJC temperature indices over the 18-year
timespan (2004–2021). The environment including
land use land cover (LULC) and LULC change is
also not accounted for. According to land-cover pro-
portions calculated with National Land Cover Data-
base data (Multi-Resolution Land Characteristics
Consortium [MRLC]) approximately one-third
(30%) of the land-water area of SJC has changed by
LULC category sometime between 2004 and 2019
(MRLC 2021). There were noticeable increases in
area with developed land (open space, low intensity,
medium intensity, high intensity) (22–149%) and
decreases in shrub/scrub (47%), hay/pasture (31%),
and herbaceous (32%). A previous analysis using
AMCD surveillance records found evidence of a shift
in the population abundance and distribution of Ae.
taeniorhynchus mosquitoes in permanent trapping
locations following LULC changes (Qualls et al.
2021). Intraspecies competition is another gray area
likely to confound results, since its impacts at the
county level are unclear, while significant relationships
have been distinguished at a trap-site level (Qualls
et al., unpublished data). The significant negative trend
of Ae. albopictus and Cx. quinquefasciatus versus year
found during correlation analyses is an interesting
observation and should be examined further in context
of LULC change and climate change. In the context of
implementing these exact models for Anopheles,
Culex, and Aedes species, it is important to consider
that validation with AMCD data showed a reduced pre-
dictive capability as mosquito populations increased.
Florida and the AMCD already have a legislative mos-
quito action threshold in place. The models here tended
to overestimate and lead to false positives during vali-
dation; thus if AMCD realistically moved by these
models it could lead to wasted time, money, and labor
resources. A follow-up analysis is planned both to
investigate the quantitative impact of AMCD ULV
adulticide missions on mosquito population numbers
and to understand the overall pattern of theoretically
triggered and/or completed missions. Another future
direction incorporating control data is to investigate the
effectiveness of control activities on directly targeted
species (.25 trap count) and indirectly targeted species
(,25 trap count) to understand if a lowered threshold
number effectively reduces populations sooner and for
longer periods. Otherwise, we could rely on model
equations to back calculate using 25 and 8.33 as the
response variable to understand the threshold precipita-
tion and temperature values of concern.

The final takeaway is that these models are useful
despite the limitations and necessary assumptions. It is
meaningful that statistically significant models were
successfully developed for ecologically distinct habitat
genera groups, albeit with subjective predictive capac-
ity and operational capabilities. Importantly, no actual

MARCH 2024 CLIMATE-BASED ACTION THRESHOLDS FOR MOSQUITO CONTROL 67

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-05-09 via free access



thresholds were optimized due to the analytical limita-
tions described and the logistical hurdles to investigate
more robust models given the dataset constraints. In
the context of implementation of these models or the
development of models using the same methodology,
it is crucial for any program to account for available
resources (personnel, time, equipment) and field
knowledge (chemicals, mosquito biology/ecology) in
the context of regional priorities (political, economic,
disease transmission). Questions for any novel control
initiative to address include (1) presence of which nui-
sance and/or vector species, 2) potential of disease
transmission in the area, 3) physical and financial abil-
ity to conduct surveillance activities, 4) physical and
financial ability to conduct surveillance activities, and
5) typical climate patterns. Programs lacking historical
data or rigorous entomological training can further
consider utilization of online databank platforms that
enable access to mosquito and mosquito-borne disease
data (Brown et al. 2021). Leverage of existing datasets
can 1) provide knowledge of local species and disease
incidence, and 2) lend local or geographically similar
data for threshold model development. Leverage of
climate forecast models may lend sufficient lead time
to provide climate predictor estimates (Lowe et al.
2018). These models for SJC do not provide a silver
bullet answer to each specific context worldwide but
do lend thought to how to optimize models for distinct
regions and resource-dependent contexts.

Precipitation was the most important predictor for
SJC, potentially because of its subtropical climate,
whereas temperature and especially relative humidity
might be of larger significance in other eco-regions due
to larger seasonal variations. The variables of rainfall
amount versus number of rainy days have subtle differ-
ences in statistical power and biological significance,
and attention should be paid to the occurrence and
lagged effect of outlier rainfall events. Lag time and
temperature indices were important when constructing
models and seasonality is an important modifier. Sensi-
tivity and specificity should be balanced during valida-
tion of any threshold before implementation. Any
control activities against a target species are going to
impact nontarget species sharing the same ecological
niche. Optimizing models for priority species rather
than all species can help to fulfill reduction of disease
transmission in conjunction with nuisance nonvector
species. Operational thresholds need to be proactive
and geared toward specific control activities, since tim-
ing and strategy strongly depend on target species, life
stage, and habitat. Leverage of existing mosquitoes,
mosquito-borne disease, and climate data during model
development, threshold optimization, or ongoing sur-
veillance can increase operational efficiency.
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