While most research on West Nile virus (WNV) and its main vector, the Culex mosquito, has been conducted in laboratory or urban settings, studies with field-caught mosquitoes in rural areas, such as west-central Illinois, are lacking. The objective of this research was to investigate key abiotic factors using macroclimate data, including temperature, precipitation, and wind speed, to determine their influence on field-caught mosquito abundance in 4 rural counties in Illinois from 2014 to 2016. Additionally, the relationship between minimum infection rate (MIR) and thermal time was examined. Using gravid traps at 15 sites, Culex mosquitoes were collected twice a week. A total of 5,255 adult female Culex mosquitoes (Cx. pipiens, Cx. quinquefasciatus, and Cx. restuans) were collected in 2014; 9,138 in 2015; and 5,702 in 2016. Regression models were developed based on outcomes of relationships between field-caught mosquitoes and abiotic factors. Precipitation and thermal time had the most significant relationship with mosquito abundance (r2 = 0.993 and r2 = 0.993, respectively), while wind speed was less (r2 = 0.714). The greatest number of Culex and the highest annual MIR were observed in 2015, which was also the driest of the 3 sampling seasons. Mosquito abundance was observed to increase with warmer degree days and MIR was found to increase with abundance in mosquitoes. These models can be used for other mosquito surveillance and monitoring studies in various climate types and environments.ABSTRACT
Aedes aegypti is an anthropophilic mosquito that vectors dengue, chikungunya, Zika, and yellow fever viruses. The US Center for Disease Control and Prevention (CDC)’s autocidal gravid ovitraps (AGOs) may facilitate the control of container-inhabiting Aedes mosquitoes and curb arbovirus outbreaks by taking advantage of oviposition-seeking behavior using pesticide-free technology. The AGOs, manufactured by SpringStar Inc., were tested during the summer of 2018 in St. Augustine, FL. A total of 1,718 AGOs were deployed for study in 3 different 40-acre (∼18.2 ha) plots at a density of 5–7 AGOs per house and a coverage of >90% for all AGO test sites. The AGOs were modified using tap water instead of infusion water to reduce the capture of nontarget organisms. Each intervention and reference area was monitored weekly using BioGents Sentinel traps and Sentinel AGOs. Generalized linear mixed models showed that changes to Aedes mosquito populations were more seasonal than treatment driven. Homeowners expressed positivity about traps and believed the traps were both effective and had directly contributed to increased quality of life.ABSTRACT
The Asian tiger mosquito, Aedes albopictus, is an important vector of chikungunya, dengue, yellow fever, and Zika viruses. Vector control remains an important means for the prevention and control of vector-borne diseases. The development of insecticide resistance has become a serious threat to the efficacy of insecticide-based control programs. To understand the resistance status and the underlying genetic mechanism in mosquitoes in Guangyuan City of Sichuan Province, China, we investigated the susceptibility of Ae. albopictus to four commonly used insecticides. We found that all the examined populations were susceptible to malathion and propoxur. However, Ae. albopictus populations in Guangyuan showed a possible resistance to the two tested pyrethroids (beta-cypermethrin and deltamethrin). Notably, phenotypic resistance to deltamethrin was detected in 2 of the 7 populations. The potential of resistance to pyrethroids was confirmed by the presence of knockdown resistance (kdr) related mutations in the voltage-gated sodium channel. Four kdr mutations (V1016G, I1532T, F1534L, and F1534S) were identified to be present alone or in combination, and their distribution displayed significant spatial heterogeneity. These findings are helpful for making evidence-based mosquito control strategies and highlight the need to regularly monitor the dynamics of pyrethroid resistance in this city.ABSTRACT
Understanding the influence of salinity on the efficacy of mosquito larvicides in brackish water habitats is crucial for effective salt-marsh Aedes taeniorhynchus control. This study investigated the interactive effects of salinity on the toxicity of 3 commonly used mosquito larvicides: Bacillus thuringiensis israelensis (VectoBac® 12AS), spinosad (Natular® SC), and S-methoprene (Altosid® 12AS) against Ae. taeniorhynchus larvae. Four salinity levels (0 ppt [parts per thousand], 8 ppt, 16 ppt, and 32 ppt) were tested in laboratory bioassays. The results revealed distinct responses of these larvicides to varying salinity levels. VectoBac 12AS displayed consistent efficacy across all salinity levels, indicating its suitability for brackish water habitats. In contrast, Natular 2EC exhibited increased effectiveness with higher salinity, making it a preferable choice for saline environments. Altosid 12AS showed its highest efficacy in freshwater, with reduced effectiveness as salinity increased. These findings underscore the need to consider salinity levels when selecting and applying mosquito larvicides in diverse aquatic habitats. Understanding the complex interplay between salinity and larvicide performance is essential for optimizing mosquito control strategies and mitigating mosquito-borne diseases in various environments.ABSTRACT
The sterile insect technique (SIT) and the incompatible insect technique (IIT) are emerging and potentially revolutionary tools for controlling Aedes aegypti (L.), a prominent worldwide mosquito vector threat to humans that is notoriously difficult to reduce or eliminate in intervention areas using traditional integrated vector management (IVM) approaches. Here we provide an overview of the discovery, development, and application of SIT and IIT to Ae. aegypti control, and innovations and advances in technology, including transgenics, that could elevate these techniques to a worldwide sustainable solution to Ae. aegypti when combined with other IVM practices.ABSTRACT
Strategies to advance action threshold development can benefit both civilian and military vector control operations. The Anastasia Mosquito Control District (AMCD) has curated an extensive record database of surveillance programs and operational control activities in St. Johns County, Florida, since 2004. A thorough exploratory data analysis was performed on historical mosquito surveillance and county-wide climate data to identify climate predictors that could be used in constructing proactive threshold models for initiating control of Aedes, Culex, and Anopheles vector mosquitoes. Species counts pulled from Centers for Disease Control and Prevention (CDC) light trap (2004–2019) and BG trap (2014–2019) collection records and climate parameters of temperature (minimum, maximum, average), rainfall, and relative humidity were used in two iterations of generalized linear models. Climate readings were incorporated into models 1) in the form of continuous measurements, or 2) for categorization into number of “hot,” “wet,” or “humid” days by exceedance of selected biological index threshold values. Models were validated with tests of residual error, comparison of model effects, and predictive capability on testing data from the two recent surveillance seasons 2020 and 2021. Two iterations of negative binomial regression models were constructed for 6 species groups: container Aedes (Ae. aegypti, Ae. albopictus), standing water Culex (Cx. nigripalpus, Cx. quinquefasciatus), floodwater Aedes (Ae. atlanticus, Ae. infirmatus), salt-marsh Aedes (Ae. taeniorhyncus, Ae. sollicitans), swamp water Anopheles (An. crucians), and a combined Total Mosquitoes group. Final significant climate predictors varied substantially between species groups. Validation of models with testing data displayed limited predictive abilities of both model iterations. The most significant climate predictors for floodwater Aedes, the dominant and operationally influential species group in the county, were either total precipitation or frequency of precipitation events (number of “wet” days) at two to four weeks before trap collection week. Challenges hindering the construction of threshold models were discussed. Insights gained from these models provide initial feedback for streamlining the AMCD mosquito control program and analytical recommendations for future modelling efforts of interested mosquito control programs, in addition to generalized guidance for deployed armed forces personnel with needs of mosquito control but lacking active surveillance programs.ABSTRACT
Aedes albopictus is a vector of several pathogens of significant public health concern. In this situation, gravid traps have become a common surveillance tool for Aedes spp., which commonly use hay infusions as an attractant. Diverse grass infusions have been assessed to enhance the attraction to this vector mosquito. However, these studies have focused on the oviposition effect, and the attraction potential to gravid Ae. albopictus females has not been evaluated yet. Here we report the attractiveness of infusions of 4 different botanical species (Cenchrus purpureus, Cyanodon dactylon, Megathyrus maximus, Pennisetum ciliare) as baits in sticky ovitraps and autocidal gravid ovitraps (AGOs) under laboratory, semifield, and field conditions. In the laboratory, Cynodon dactylon showed attractiveness, whereas in semifield conditions, both C. dactylon and Megathyrsus maximus were similarly attractive for gravid Ae. albopictus. None of the infusions conducted with AGOs were able to lure Ae. albopictus and other species of mosquitoes in a 14-wk field experiment. Our results demonstrate the feasibility of finding more attractive infusions for Ae. albopictus females to improve the efficacy of AGO traps, but further testing of infusions in AGOs in field settings is needed.ABSTRACT
The BG Sentinel-2 (BGS-2) and BG-Pro traps (BGS-2 configuration) were compared for their effectiveness to collect Aedes vectors and related nuisance mosquitoes in north central Florida during 2022. Traps were baited with either dry ice pellets, pressurized carbon dioxide (CO2) gas, or the novel BG yeast-derived CO2 generator. Additionally, each trap was fitted with the BG Sweetscent lure. Sixteen species were collected including Aedes albopictus and Ae. aegypti, which accounted for about 20% of the collections. The BGS-2 collected more mosquitoes compared to the BG-Pro, but the relative percent abundance of each species to total collection from each trap type was similar. Overall mosquito abundance was significantly greater in both trap types baited with dry ice compared with the other CO2 sources. Significantly more Ae. albopictus were collected from BGS-2 traps baited with dry ice than all other CO2 and trap configurations. Lastly, we did not observe any significant differences in Ae. aegypti abundance between trap type or CO2 source.ABSTRACT
Over the course of three years, 200 ft to 0.75 mi (60 m to 1.2 km) sections of 3 larger (>6 ft [1.8 m] diam) belowground storm sewer conveyance pipes in the northwestern Chicago suburbs were inspected for the presence of adult mosquitoes. Culex mosquitoes were by far the most common (555 of 556 [99.8%] total mosquitoes) collected within pipes during all four meteorological seasons (i.e. during months of October, January, May, August). These observations support prior work elsewhere, suggesting storm sewer pipes are consistent sites of refuge for adult Culex mosquitoes.ABSTRACT